Fiche 12: TD du 3-10.

Exercice 1

Calculer pour $(n, a, b) \in \mathbb{N}^* \times \mathbb{R}^2$:

$$\sum_{k=0}^{n-1} \cosh(a+bk), \quad \sum_{k=0}^{n-1} \sinh(a+bk).$$

Exercice 2

1. Montrer que pour tout réel x non nul, on a :

$$\tanh(x) = \frac{2}{\tanh(2x)} - \frac{1}{\tanh x}$$

2. En déduire la valeur de

$$u_n = 2^0 \tanh(2^0 x) + 2^1 \tanh(2^1 x) + \dots + 2^n \tanh(2^n x)$$

pour n entier naturel non nul et x réel non nul donnés puis calculer la limite de (u_n) .

Exercice 3

Soit f la fonction définie sur $[0; \frac{\pi}{2}[$ par :

$$f(x) = 2\sin(x) + \tan(x) - 3x$$

Étudier la fonction f et montrer que, pour tout $x \in [0; \frac{\pi}{2}[$:

$$2\sin(x) + \tan(x) \ge 3x$$

Exercice 4

Soit f la fonction définie par :

$$f(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

- 1. Étudier sur \mathbb{R} le signe de l'expression $\frac{1+x}{1-x}$
- 2. En déduire le domaine de définition D_f de f.
- 3. Étudier la parité de f sur D_f .
- 4. Déterminer f'(x) pour $x \in D_f$.
- 5. Justifier que f est une bijection entre des ensembles à préciser (On formulera la réponse à cette question sous la forme : la fonction f est une bijection de l'ensemble ... sur l'ensemble ...)
- 6. Montrer que pour tout x de D_f : tanh(f(x)) = x
- 7. Montrer que pour x dans un ensemble qu'on déterminera : $f(\tanh(x)) = x$.

Exercice 5

Pour $x \in \mathbb{R}$, on pose $f(x) = \exp(x/e)$ et on considère par ailleurs l'équation d'inconnue x réelle :

(E)
$$\exp(\exp(x/e)/e) = x$$

- 1. Étudier les variations de la fonction f.
- 2. Soit $x \in \mathbb{R}$, montrer que si f(x) = x alors x est solution de (E).
- 3. Montrer réciproquement que si x est solution de (E) alors f(x) = x (on pourra procéder par l'absurde ou par contraposée).
- 4. Étudier sur \mathbb{R} la fonction définie par g(x) = f(x) x.
- 5. Résoudre l'équation (E).