Fiche 22: Arithmétique.

Exercice 1

Combien 15! admet-il de diviseurs?

Exercice 2

Trouver 1000 entiers consécutifs non premiers.

Exercice 3

Déterminer les entiers $n \in \mathbb{N}$ tels que :

- 1. $n \mid n + 8$.
- 2. $n-1 \mid n+11$.
- 3. $n-3 \mid n^3-3$.

Exercice 4

Trouver tous les entiers relatifs n tels que $n^2 + n + 7$ soit divisible par 13.

Exercice 5

Soit $a \geq 2$ un entier et $r \geq 2$ un entier.

On suppose que $a^r - 1$ est un nombre premier.

- 1. Montrez que r est premier, puis que a vaut 2.
- 2. Réciproque?

Exercice 6: Fonctions d'Euler

Sur \mathbb{N}^* , on considère d et σ les fonctions qui a un nombre n associent respectivement :

- d(n) le nombre de ses diviseurs entiers naturels (y compris n lui même).
- $\sigma(n)$ la somme de ses diviseurs entiers naturels (y compris n lui même).
- 1. Si p est un entier premier et $k \in \mathbb{N}^*$, déterminer $d(p^k)$ et $\sigma(p^k)$.
- 2. Montrer que si n et m sont premiers entre eux alors $d(n \times m) = d(n) \times d(m)$ et $\sigma(n \times m) = \sigma(n) \times \sigma(m)$.

Exercice 7

1. Soit a et n des entiers avec $a \ge 2$ et $n \ge 2$ tel que $a^n + 1$ soit premier, montrer que : $(\exists k \in \mathbb{N})$ $n = 2^k$.

On pose le n ième nombre de Fermat comme étant :

$$F_n = 2^{2^n} + 1$$

On peut vérifier à la main que $F_0 = 2 + 1 = 3$, $F_1 = 2^2 + 1 = 5$, $F_2 = 2^4 + 1 = 17$, $F_3 = 2^8 + 1 = 257$ et $F_4 = 2^{16} + 1 = 65537$ sont premiers.

2. Suivons Euler pour prouver que $F_5 = 2^{32} + 1 = \dots$ est divisible par 641!!

Pour cela, remarquer que : $641 = 625 + 16 = 5^4 + 2^4$ et $641 = 64 * 10 + 1 = 2^7 * 5 + 1$ et calculer modulo 641.