Fiche 41: TD du 16-01.

Exercice 1

Montrer que les vecteurs $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$ forment une base de \mathbb{R}^3 . Calculer les coordonnées respectives des vecteurs $\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 dans cette base.

Exercice 2

Soient dans
$$\mathbb{R}^4$$
 les vecteurs $v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 1 \\ -2 \\ 3 \\ -4 \end{pmatrix}$.
Peut-on déterminer x et y pour que $\begin{pmatrix} x \\ 1 \\ y \\ 1 \end{pmatrix} \in \operatorname{Vect}\{v_1, v_2\}$? Et pour que $\begin{pmatrix} x \\ 1 \\ 1 \\ y \end{pmatrix} \in \operatorname{Vect}\{v_1, v_2\}$?

Exercice 3

Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ vérifiant $x_1+x_2+x_3+x_4=0$. L'ensemble E est-il un sous-espace

vectoriel de \mathbb{R}^4 ? Si oui, en donner une base.

Exercice 4

Soit (Σ) le système d'équations linéaires :

$$\left\{ \begin{array}{l} x+3y+2z=0\\ x+y+z+t=0\\ x-t=0 \end{array} \right.$$

Montrer que l'ensemble des solutions de (Σ) forme un sous-espace vectoriel F de \mathbb{R}^4 . Déterminer la dimension et une base de F.

Exercice 5

Soient
$$e_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $e_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ et $e_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ des vecteurs de \mathbb{R}^4 .

Posons $F = \text{Vect } \{e_1, e_2\}, G = \text{Vect } \{e_3, e_4\}, G' = \text{Vect } \{e_3, e_4, e_5\}.$

Montrer que $E = F \oplus G$ et $E \neq F \oplus G'$.

Exercice 6

Dans l'espace \mathcal{P}_5 des polynômes de degré ≤ 5 , on définit les sous-ensembles :

$$E_1 = \{ P \in \mathcal{P}_5 \mid P(0) = 0 \}$$

$$E_2 = \{ P \in \mathcal{P}_5 \mid P'(1) = 0 \}$$

$$E_3 = \{ P \in \mathcal{P}_5 \mid x^2 + 1 \text{ divise } P \}$$

$$E_4 = \{ P \in \mathcal{P}_5 \mid x \mapsto P(x) \text{ est une fonction paire} \}$$

$$E_5 = \{ P \in \mathcal{P}_5 \mid \forall x, \ P(x) = xP'(x) \}.$$

- 1. Déterminer des bases des sous-espaces vectoriels E_1 , E_2 , E_3 , E_4 , E_5 , $E_1 \cap E_2$, $E_1 \cap E_3$, $E_1 \cap E_2 \cap E_3$, $E_1 \cap E_2 \cap E_3 \cap E_4$.
- 2. Déterminer dans \mathcal{P}_5 des sous-espaces supplémentaires de E_4 et de $E_1 \cap E_3$.