Fiche 46: Fonctions continues.

Exercice 1

Soit f une fonction continue sur [0,1] telle que f(0)=f(1). Montrer qu'il existe c dans $[0,\frac{1}{2}]$ tel que $f(c)=f(c+\frac{1}{2})$.

Exercice 2

Soit $f: \mathbb{R} \to \mathbb{R}^+$ continue et $\lim_{-\infty} f = 0$; $\lim_{+\infty} f = 0$.

Montrer que f est bornée et possède un maximum.

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall x \in \mathbb{R}, f(x) = f(2x)$. Montrer que f est constante.

Donner un exemple de fonction $f: \mathbb{R}^* \to \mathbb{R}$ continue non constante telle que $\forall x \in \mathbb{R}^*$, f(x) = f(2x).

Exercice 4

Donner un exemple d'application $f:\mathbb{R}\to\mathbb{R}$ non constante telle que :

$$\forall x \in \mathbb{R}, f(x) = f(x^2).$$

On suppose f continue en 0 et en 1, montrer que f est constante.

Exercice 5

Calculer la fonction dérivée d'ordre $n \in \mathbb{N}$ des fonctions définies par :

$$f(x) = \sin x$$
 ; $g(x) = \sin^2 x$; $h(x) = \sin^3 x + \cos^3 x$; $g(x) = \frac{1}{1 - x^2}$