Fiche 4: Trigonométrie: TD du 11-09.

Exercice 1

Calculer $\sin(25\pi/3), \cos(19\pi/4), \tan(37\pi/6)$.

Exercice 2

À l'aide de la relation $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$, donner des valeurs pour $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 3

Résoudre dans \mathbb{R} les équations :

$$\sin(x) = \frac{1}{2}, \cos(x) = -\frac{1}{2}, \tan(x) = -1,$$

et placer sur le cercle trigonométrique les images des solutions.

Exercice 4

A l'aide des formules d'arc doubles, donner des valeurs pour $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$.

Exercice 5

Résoudre dans \mathbb{R} les équations suivantes : et donner les valeurs des solutions appartenant à $]-\pi,\pi]$ et les placer sur le cercle trigonométrique.

- $1. \cos(3x) = \cos(x).$
- $2. \sin(2x) = \sin(3x),$
- $3. \sin(2x) = \cos(3x),$
- 4. $\cos^2(x) \sin^2(x) = \sin(3x)$.

Exercice 6

Résoudre l'équation : $2\sin^2(x) - 3\sin(x) - 2 = 0$.

Exercice 7

On pose, pour $x \in \mathbb{R}$:

$$P(x) = 8x^3 - 6x - 1$$

- 1. Etudier la fonction P sur \mathbb{R} et en déduire que P a 3 racines réelles x_1, x_2, x_3 avec $-1 < x_1 < x_2 < x_3 < 1$.
- 2. Exprimer $\cos(3\theta)$ en fonction de $\cos(\theta)$ pour θ réel.
- 3. En faisant le changement d'inconnue $x = \cos(\theta)$, écrire x_1, x_2, x_3 sous forme trigonométrique.