# Fiche 5: Nombres complexes.

### Exercice 1

Mettre sous forme trigonométrique les nombres complexes suivants : a=-3+3i  $b=1-i\sqrt{3}$  Mettre sous forme algébrique le complexe  $a=\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ 

#### Exercice 2

Déterminer pour quelles valeurs de  $n \in \mathbb{Z}$ , le nombre  $(1+\sqrt{3}i)^n$  est un réel positif.

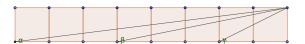
## Exercice 3

Déterminer les racines carrées des nombres 3 + 4i puis 5 + 12i sous forme algébrique.

#### Exercice 4

On pose  $u=e^{2i\pi/5}$ 

- 1. Calculer  $u^4 + u^3 + u^2 + u + 1$  à l'aide de l'identité géométrique.
- 2. En déduire une relation simple vérifiée par  $\cos(\frac{2\pi}{5})$  puis une expression algébrique de  $\cos(\frac{2\pi}{5})$ .
- 3. Montrer que  $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$


#### Exercice 5

Pour x réel :

- 1. À l'aide des formules de Moivre et d'Euler, linéariser  $\cos^5(x)$  et  $\sin^5(x)$ .
- 2. À l'aide des formules d'Euler puis Moivre, calculer  $\sin(3x)$  et  $\sin(5x)$  en fonction de  $\sin(x)$ .

#### Exercice 6

Soit la figure suivante : on a dessiné 8 carrés et repéré les angles  $\alpha$ ,  $\beta$ ,  $\gamma$ .



Montrer que  $\alpha + \beta + \gamma = \frac{\pi}{4}$  (On pourra écrire des nombres complexes  $z_1$ ,  $z_2$  et  $z_3$  dont les arguments sont  $\alpha$ ,  $\beta$  et  $\gamma$  et calculer  $z_1 * z_2 * z_3$ ).

## Exercice 7

Trouver tous les nombres complexes z tels que les points d'affixes z,  $z^2$  et  $z^4$  soient alignés.