Fiche 17: Td du 17-10.

Exercice 1

Donner la solution générale des équations différentielles suivantes (inconnue $t \to y(t)$ définie sur \mathbb{R}):

1.
$$y'' - 4y' + 4y = 1 + e^t$$

2.
$$y'' + 4y' - 5y = 2e^t$$

3.
$$y'' + 2y' + y = \sin(2t)$$

4.
$$y'' + y = \cos(t)$$

5.
$$y'' - 2y' + y = 2e^t \sin(t)$$

Exercice 2

Résoudre le problème de Cauchy (inconnue $x \to y(x)$ définie sur \mathbb{R}) :

$$\begin{cases} y'' + 4y = \sin(x) \\ y(0) = y'(0) = 0 \end{cases}$$

Exercice 3

Calculer des primitives des expressions suivantes :

$$\sin^2(x)$$
 ; $\frac{1}{1+x^2}$; $\frac{x}{1+x^2}$; $\frac{x^2}{1+x^2}$

$$x \exp(x^2)$$
 ; $\frac{1}{1-x^2}$; $\frac{1}{\sqrt{1-x^2}}$; $\frac{x}{\sqrt{1-x^2}}$

On précisera le domaine de validité des calculs

Exercice 4

Linéariser l'expression $\sin^3(t)$ et en déduire une primitive de l'expression $\sin^3(t)$.

Exercice 5

Calculer des primitives des expressions suivantes. On donnera l'intervalle de validité du calcul.

$$\tan(t)$$
 ; 2^t ; $(e^t + 2)^2$; $\sqrt{2t + 1}$;

$$\ln(t^2 - 4)$$
 ; $\cos(t)\sin^5(t)$; $\frac{1}{e^t + 1}$;

Exercice 6

On considère le problème suivant :

$$\begin{cases} y'' = -\omega^2 y \\ y(0) = y(1) = 0 \end{cases}$$

les inconnues sont : y fonction 2 fois dérivable sur \mathbb{R} et $\omega > 0$.

- 1. Montrer que sauf pour certaines valeurs de ω , on a forcément y=0.
- 2. Représenter l'allure des solutions y non nulles quand il y en a.

Exercice 7

Déterminer l'ensemble des fonctions dérivables sur $\mathbb R$ telles que :

$$(\forall x \in \mathbb{R})$$
 $f'(x) + f(-x) = e^x$

(On dérivera la relation précédente).