Fiche 18: Primitives.

Exercice 1

Calculer des primitives des expressions suivantes. On donnera l'intervalle de validité du calcul.

$$\frac{x^2}{x^2+5}$$
 ; $\frac{1}{\sqrt{5-x^2}}$; $e^x \sin(e^x)$; $\tan^3 x$;

$$\frac{2x+3}{(x^2+3x+7)^3}$$
, ; $\frac{\ln(x)}{x}$; $\frac{\sin(x)}{\cos^5(x)}$.

Exercice 2

Calculer des primitives des expressions suivantes, éventuellement par intégration par parties ou changement de variable, on précisera l'intervalle de validité du calcul.

- 1. $x\sin(2x)$
- $2. \cos(2x) \exp(-x)$
- 3. $ln(1+x^2)$
- 4. $\arcsin^2(x)$
- 5. $x \arctan(x)$
- 6. $\frac{1}{x^2-2x+1}$
- 7. $\frac{1}{x^2 4x + 8}$
- 8. $\frac{1}{x^2+2x+5}$

Exercice 3

Déterminer une primitive de la fonction $t \to \sin(\ln(t))$ sur \mathbb{R}_+^* en faisant un changement de variable.

Exercice 4

Calculer une primitive de l'expression $\frac{1}{\sin(x)}$ sur un intervalle à préciser en posant : $u = \cos(x)$.

Exercice 5

Déterminer une primitive de la fonction : $t \to \frac{1}{(1+t^2)^2}$:

- 1. en intégrant par parties l'expression $t \to \frac{1}{(1+t^2)}$.
- 2. en procédant au changement de variable : $t = \tan(u)$.