DM 2, Pour le 12-11-2025, une copie pour 2 élèves.

Exercice 1

On cherche à résoudre le problème : trouver les fonctions f 2 fois dérivables sur \mathbb{R}_+^* telle que, pour tout x>0 :

$$(E)$$
: $x^2 f''(x) - 2f(x) = x$

Pour cela, on pose pour $t \in \mathbb{R}$: $g(t) = f(\exp(t))$.

Pour la suite, on pourra noter $x = \exp(t)$

1. Montrer que si f est une solution de (E) alors la fonction g vérifie, pour tout $t \in \mathbb{R}$:

$$g''(t) - g'(t) - 2g(t) = \exp(t)$$

2. En déduire l'ensemble des solutions de l'équation (E).

Exercice 2

Soit f la fonction définie par :

$$f(x) = \arctan\left(\sqrt{\frac{1-x}{x}}\right)$$

- 1. Déterminer le domaine de définition D_f de f.
- 2. Montrer que pour tout $x \in]0,1[$:

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x}(\arccos(\sqrt{x}))$$

- 3. Déterminer les limites de f en 0 et en 1.
- 4. Montrer que pour $x \in D_f$:

$$f(x) = \arccos(\sqrt{x})$$

- 5. Représenter le graphique de la fonction f.
- 6. Montrer que pour tout $x \in]0,1]: f(x) = \frac{1}{2}\arccos(2x-1)$.
- 7. Retrouver les résultats précédents géométriquement.