Fiche 20: TD du 6-11.

Exercice 1

Déterminer "les" primitives suivantes :

$$\int \frac{x^2 dx}{x^2 + x + 5} \quad ; \quad \int \sqrt{1 - x^2} dx \quad \int \frac{1}{\cosh(x)} dx$$

Pour les 2 dernières, on pourra procéder par changement de variable.

Exercice 2

Donner la solution générale sur $\mathbb R$ de l'équation différentielle :

$$y'(x) + y(x) = \frac{e^x}{1 + 2e^x}$$

Exercice 3

On considère les équations différentielles (variable $x \in \mathbb{R}$):

$$(E): (1-x^2)y' + xy = 1, \quad (E_0): (1-x^2)y' + xy = 0$$

- 1. Montrer que $f: x \to y(x) = x$ est une solution particulière de (E) pour $x \in \mathbb{R}$.
- 2. Résoudre (E_0) pour -1 < x < 1 en donnant sa solution générale. On considère f_0 la solution définie pour -1 < x < 1 vérifiant $f_0(0) = 1$.
- 3. Étudier la fonction f_0 , tracer son graphique ainsi que celui d'autres solutions de (E_0) sur l'intervalle]-1,1[.
- 4. Résoudre (E_0) pour x > 1 en donnant sa solution générale.
- 5. En étudiant une des solutions précédentes, tracer le graphique d'un certain nombre de solutions de (E_0) sur l'intervalle $]1,\infty[$.
- 6. Résoudre (E_0) pour x < -1 en donnant sa solution générale.
- 7. Tracer le graphique d'un certain nombre de solutions de (E_0) sur l'intervalle $]-\infty,-1[$.
- 8. Donner la solution générale de (E) sur chacun des intervalles $]-\infty,-1[,]-1,1[$ et]-1,1[. Donner sur un même graphique l'allure de quelques solutions.

Exercice 4

Montrer que l'équation différentielle $(x_i n\mathbb{R})$:

$$y' + 2xy = 1$$

admet une unique solution impaire.