Fiche 22: TD du 13-11.

Exercice 1

Éventuellement en utilisant la méthode de la variation de la constante, donner la solution générale pour x > 0 de l'équation différentielle d'inconnue y:

$$xy'(x) + y(x) = \cos(x)$$

Exercice 2

On se propose de calculer pour $x \in \mathbb{R}$ une primitive de l'expression : $\sqrt{x^2 + 1}$.

On rappelle que si u est réel alors $\sinh(u) = \frac{e^u + e^{-u}}{2}$ et $\cosh(u)^2 = \sinh(u)^2 + 1$.

- 1. Faire le changement de variable $x = \sinh(u)$ pour déterminer une primitive de l'expression : $\frac{1}{\sqrt{1+x^2}}$, primitive qu'on pourra noter : $\int \frac{dx}{\sqrt{1+x^2}}$
- 2. Faire une intégration par parties pour déterminer une primitive de l'expression : $\sqrt{1+x^2}$, primitive qu'on pourra noter : $\int \sqrt{1+x^2} \, dx$

Exercice 3

On considère les équations différentielles (variable $x \in \mathbb{R}$):

$$(E): (1+x^2)y' + 2xy = 1, \quad (E_0): (1+x^2)y' + 2xy = 0$$

- 1. Étudier sur \mathbb{R} les fonctions $x \to \frac{1}{1+x^2}$ et $x \to \frac{x}{1+x^2}$
- 2. Résoudre (E_0) pour $x \in \mathbb{R}$ en donnant sa solution générale. On considère f_0 la solution vérifiant $f_0(0) = 1$.
- 3. Tracer le graphique de f_0 ainsi que celui d'autres solutions de (E_0) sur \mathbb{R} .
- 4. Donner la solution générale de (E) sur \mathbb{R} . Donner sur un même graphique l'allure de quelques solutions.

Exercice 4

Dans cet exercice, on cherche les fonctions réelles f définies sur \mathbb{R}_+^* , 2 fois dérivables, telles que : pour tout x > 0 :

$$x^2 f''(x) = 2f(x)$$

problème noté (E).

- 1. On considère donc f une solution possible de (E). On pose de plus : pour $t \in \mathbb{R}$: $F(t) = f(\exp(t))$.
 - (a) Déterminer une équation différentielle d'ordre 2 vérifiée par F.
 - (b) En déduire les valeurs possibles de F puis de f.
- 2. Quel est l'ensemble des solutions de (E)?