Calcul vectoriel

N. Mesnier Lycée international Jean Perrin, Lyon

2025-2026

Plan du cours

- 1 Introduction
- 2 Opértations vectorielles
- 3 Applications

Pourquoi des vecteurs?

Les vecteurs

sont des outils privilégiés

pour préciser :

- la situation d'un élément matériel dans un référentiel;
- la vitesse ou l'accélération d'un de ses points par rapport à un référentiel donné;
- les actions mécaniques agissant sur lui.

modèles et calculs en mécanique

Pourquoi des vecteurs?

Les **vecteurs**

sont des outils privilégiés

pour préciser :

- la situation d'un élément matériel dans un référentiel :
- la vitesse ou l'accélération d'un de ses points par rapport à un référentiel donné;
- les actions mécaniques agissant sur lui.

modèles et calculs en mécanique

Définition

Définition (Vecteur)

Un vecteur est un objet mathématique, noté \overrightarrow{u} par exemple pour le « vecteur u », qui appartient un espace vectoriel et qui possède trois caractéristiques :

- une direction;
- un sens;
- une norme.

Notations

- & : ensemble des points de l'espace géométrique 3D ;
- \mathscr{V} : ensemble des vecteurs de l'espace;
- ullet $(\overrightarrow{u},\overrightarrow{v})$ une mesure de l'angle orienté de \overrightarrow{u} vers \overrightarrow{v} ;
- $(\overrightarrow{v}, \overrightarrow{u}) \equiv -(\overrightarrow{u}, \overrightarrow{v})[2\pi]$ une mesure de l'angle opposé.

Propriétés élémentaires

Addition vectorielle

Pour former la somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} , il suffit de considérer trois points A, B, C de $\mathscr E$ tels que $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{BC}$. Le vecteur somme est alors donné par la relation de Chasles :

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

L'addition vectorielle vérifie les propriétés suivantes :

- elle est associative : $\forall \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathcal{V}, (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$
 - elle est commutative : $\forall \overrightarrow{u}, \overrightarrow{v} \in \mathcal{V}, \ \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$
 - elle possède un élément neutre, noté $\overrightarrow{0}$, tel que : $\forall \overrightarrow{u} \in \mathcal{V}, \ \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$
 - chaque vecteur \overrightarrow{u} de \cancel{V} possède un vecteur symétrique \overrightarrow{v} vérifiant $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u} = \overrightarrow{0}$ et noté $-\overrightarrow{u}$.

Propriétés élémentaires

Produit d'un vecteur et d'un réel

À tout nombre réel λ et à tout vecteur \overrightarrow{u} de \mathscr{V} , on peut associer le vecteur $\lambda \overrightarrow{u}$. Ce produit externe vérifie les propriétés suivantes :

- il possède un élément neutre : $\forall \overrightarrow{u} \in \mathscr{V}, \ 1 \cdot \overrightarrow{u} = \overrightarrow{u}$
- il est distributif par rapport à l'addition des réels : $\forall \lambda, \mu \in \mathbb{R}$ et $\forall \overrightarrow{u} \in \mathscr{V}, \ (\lambda + \mu) \cdot \overrightarrow{u} = \lambda \cdot \overrightarrow{u} + \mu \cdot \overrightarrow{u}$
- il est distributif par rapport à l'addition vectorielle : $\forall \lambda \in \mathbb{R} \text{ et } \forall \overrightarrow{u}, \overrightarrow{v} \in \mathscr{V}, \ \lambda \cdot (\overrightarrow{u} + \overrightarrow{v}) = \lambda \cdot \overrightarrow{u} + \lambda \cdot \overrightarrow{v}$

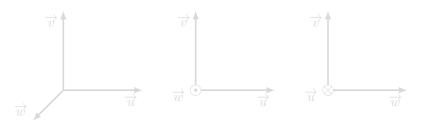
Espace vectoriel

On dira, pour résumer les propriétés de l'addition vectorielle et du produit externe, que le triplet $(\mathscr{V},+,\cdot)$ est un espace vectoriel sur \mathbb{R} .

Base d'un espace vectoriel

Définition (Base)

Une base d'un espace vectoriel de dimension trois est un triplet $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ de vecteurs non coplanaires.

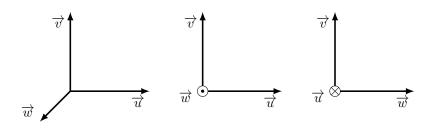


Si $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une **base directe**, alors les triplets $(\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{u})$ et $(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v})$, obtenus par permutations circulaires, sont aussi des bases directes. Les triplets $(\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w})$, $(\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{v})$ et $(\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u})$, où on a à chaque fois échangé deux vecteurs, sont des **bases indirectes**.

Base d'un espace vectoriel

Définition (Base)

Une base d'un espace vectoriel de dimension trois est un triplet $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ de vecteurs non coplanaires.



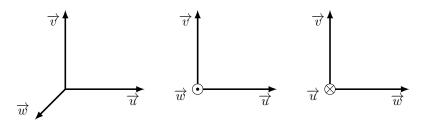
Si $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une **base directe**, alors les triplets $(\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{u})$ et $(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v})$, obtenus par permutations circulaires, sont aussi des bases directes.

Les triplets $(\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w})$, $(\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{v})$ et $(\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u})$, où on a à chaque fois échangé deux vecteurs, sont des **bases indirectes**.

Base d'un espace vectoriel

Définition (Base)

Une base d'un espace vectoriel de dimension trois est un triplet $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ de vecteurs non coplanaires.



Si $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une **base directe**, alors les triplets $(\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{u})$ et $(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v})$, obtenus par permutations circulaires, sont aussi des bases directes.

Les triplets $(\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w})$, $(\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{v})$ et $(\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u})$, où on a à chaque fois échangé deux vecteurs, sont des **bases indirectes**.

Opértations vectorielles

Définition (Produit scalaire)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. On appelle produit scalaire de \overrightarrow{u} et \overrightarrow{v} le réel $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par :

Propriété

Le produit scalaire est une application de $\mathscr{V} \times \mathscr{V} \to \mathbb{R}$

bilinéaire :

$$(\lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}) \cdot \overrightarrow{v} = \lambda \left(\overrightarrow{u_1} \cdot \overrightarrow{v} \right) + \mu \left(\overrightarrow{u_2} \cdot \overrightarrow{v} \right)$$

symétrique :

$$\overrightarrow{u}\cdot\overrightarrow{v}=\overrightarrow{v}\cdot\overrightarrow{u}$$

définie positive :

$$\overrightarrow{u} \cdot \overrightarrow{u} \geqslant 0$$
 et $\overrightarrow{u} \cdot \overrightarrow{u} = 0 \iff \overrightarrow{u} = \overrightarrow{0}$

Définition (Norme)

On appelle norme d'un vecteur \overrightarrow{v} le réel

$$\|\overrightarrow{v}\| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} \geqslant 0$$

Proposition (Perpendicularité)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls, on a :

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0 \iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux.}$$

Produit scalaire = détecteur d'orthogonalité!

Proposition (Perpendicularité)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls, on a :

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0 \iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux.}$$

Produit scalaire = détecteur d'orthogonalité!

Définition (Produit vectoriel)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. On appelle produit vectoriel de \overrightarrow{u} et de \overrightarrow{v} le vecteur $\overrightarrow{u} \wedge \overrightarrow{v}$ défini par :

- $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$ si \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
- \bullet sinon, l'unique vecteur \overrightarrow{w} orthogonal à \overrightarrow{u} et à \overrightarrow{v} , de norme :

$$\|\overrightarrow{w}\| = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times |\sin{(\overrightarrow{u},\overrightarrow{v})}|$$

et tel que le trièdre $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ soit direct (une base directe de l'espace).

Propriété

Le produit vectoriel est une application de $\mathscr{V} \times \mathscr{V} \to \mathscr{V}$

bilinéaire :

$$(\lambda\overrightarrow{u_{1}}+\mu\overrightarrow{u_{2}})\wedge\overrightarrow{v}=\lambda\left(\overrightarrow{u_{1}}\wedge\overrightarrow{v}\right)+\mu\left(\overrightarrow{u_{2}}\wedge\overrightarrow{v}\right)$$

antisymétrique :

$$\overrightarrow{u}\wedge\overrightarrow{v}=-\overrightarrow{v}\wedge\overrightarrow{u}$$

Proposition

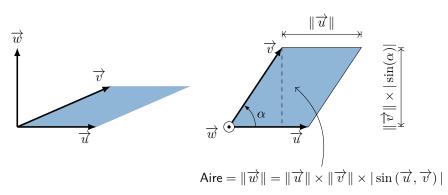
Si $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base orthonormée directe, alors

$$\overrightarrow{u} \wedge \overrightarrow{v} = -(\overrightarrow{v} \wedge \overrightarrow{u}) = \overrightarrow{w}$$

$$\overrightarrow{v} \wedge \overrightarrow{w} = -(\overrightarrow{w} \wedge \overrightarrow{v}) = \overrightarrow{u}$$

$$\overrightarrow{w} \wedge \overrightarrow{u} = -(\overrightarrow{u} \wedge \overrightarrow{w}) = \overrightarrow{v}$$

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non colinéaires d'un plan \mathscr{P} , alors le produit vectoriel $\overrightarrow{u} \wedge \overrightarrow{v}$ est un vecteur normal à \mathscr{P} et de norme la surface du parallélogramme défini par les deux vecteurs \overrightarrow{u} et \overrightarrow{v} dans le plan \mathscr{P} .



SII – MPSI | Calcul vectoriel

15

Proposition (Colinéarité)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls, on a :

$$\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0} \iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires.}$$

Produit vectoriel = détecteur de colinéarité!

SII – MPSI | Calcul vectoriel

16

Proposition (Colinéarité)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls, on a :

$$\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0} \iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires.}$$

Produit vectoriel = détecteur de colinéarité!

SII – MPSI | Calcul vectoriel

16

Proposition (Double produit vectoriel)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} , on a :

$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u}$$

Définition (Produit mixte)

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace. On appelle produit mixte (ou déterminant) du triplet $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ le réel :

$$\det\left(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right)=\left(\overrightarrow{u}\wedge\overrightarrow{v}\right)\cdot\overrightarrow{w}$$

Propriété

Le produit mixte est une application de $\mathscr{V} \times \mathscr{V} \times \mathscr{V} \to \mathbb{R}$

• trilinéaire :

$$[(\lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}) \wedge (\alpha \overrightarrow{v_1} + \beta \overrightarrow{v_2})] \cdot \overrightarrow{w} = \lambda \alpha (\overrightarrow{u_1} \wedge \overrightarrow{v_1}) \cdot \overrightarrow{w} + \lambda \beta (\overrightarrow{u_1} \wedge \overrightarrow{v_2}) \cdot \overrightarrow{w} + \mu \alpha (\overrightarrow{u_2} \wedge \overrightarrow{v_1}) \cdot \overrightarrow{w} + \mu \beta (\overrightarrow{u_2} \wedge \overrightarrow{v_2}) \cdot \overrightarrow{w}$$

• antisymétrique :

$$\det\left(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right) = -\det\left(\overrightarrow{v},\overrightarrow{u},\overrightarrow{w}\right) = -\det\left(\overrightarrow{u},\overrightarrow{w},\overrightarrow{v}\right)$$

• alternée :

$$\det\left(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right)=\det\left(\overrightarrow{v},\overrightarrow{w},\overrightarrow{u}\right)=\det\left(\overrightarrow{w},\overrightarrow{u},\overrightarrow{v}\right)$$

Proposition (Coplanéité)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} non nuls, on a :

$$\det\left(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right)=0\iff\overrightarrow{u},\ \overrightarrow{v}\ \text{et}\ \overrightarrow{w}\ \text{sont coplanaires}.$$

Produit mixte = détecteur de coplanéité!

Proposition

Si $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ est une base orthonormée directe, alors

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 1$$

Proposition (Coplanéité)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} non nuls, on a :

 $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0 \iff \overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w} \text{ sont coplanaires.}$

Produit mixte = détecteur de coplanéité!

Proposition

Si $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ est une base orthonormée directe, alors

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 1$$

Proposition (Coplanéité)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} non nuls, on a :

 $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0 \iff \overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w} \text{ sont coplanaires.}$

Produit mixte = détecteur de coplanéité!

Proposition

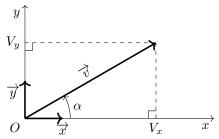
Si $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base orthonormée directe, alors

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 1$$

Applications

Projection d'un vecteur

Soit une base $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ orthonormée et \overrightarrow{v} un vecteur orienté d'un angle $\alpha = (\overrightarrow{x}, \overrightarrow{v})$ par rapport à l'horizontale.



Coordonnées du vecteur \overrightarrow{v} :

$$v_{x} = \overrightarrow{v} \cdot \overrightarrow{x} = \|\overrightarrow{v}\| \times \underbrace{\|\overrightarrow{x}\|}_{=1} \times \cos\underbrace{(\overrightarrow{v}, \overrightarrow{x})}_{-\alpha} = \|\overrightarrow{v}\| \times \cos(\alpha)$$

$$v_y = \overrightarrow{v} \cdot \overrightarrow{y} = \|\overrightarrow{v}\| \times \underbrace{\|\overrightarrow{y}\|}_{=1} \times \cos\underbrace{(\overrightarrow{v}, \overrightarrow{y})}_{\underbrace{\overline{x} - \alpha}} = \|\overrightarrow{v}\| \times \cos\left(\frac{\pi}{2} - \alpha\right) = \|\overrightarrow{v}\| \times \sin\left(\alpha\right)$$

Projection d'un vecteur

Ainsi, tout vecteur \overrightarrow{v} peut se décomposer de façon unique dans une base orthonormée $(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z})$ tel que :

$$\overrightarrow{v} = (\overrightarrow{v} \cdot \overrightarrow{x}) \overrightarrow{x} + (\overrightarrow{v} \cdot \overrightarrow{y}) \overrightarrow{y} + (\overrightarrow{v} \cdot \overrightarrow{z}) \overrightarrow{z}$$
$$= v_x \overrightarrow{x} + v_y \overrightarrow{y} + v_z \overrightarrow{z}$$

Du théorème de Pythagore, on en déduit que la norme du vecteur \overrightarrow{v} , notée $\|\overrightarrow{v}\|$, est la grandeur toujours positive :

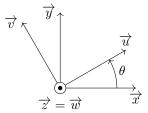
$$\|\overrightarrow{v}\| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Changement de base

Définition (Figure géométrale)

On appelle figure géométrale une figure plane permettant de relier deux bases orthonormées possédant une direction commune. L'orientation des vecteurs d'une base par rapport à l'autre est définie par un angle que l'on représentera toujours positif et inférieur à $\pi/4$.

Projections nécessaires au passage de $(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z})$ vers $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$:



$$\overrightarrow{u} \cdot \overrightarrow{x} = \cos(-\theta) = \cos(\theta)$$

$$\overrightarrow{u} \cdot \overrightarrow{y} = \cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$

$$\overrightarrow{v} \cdot \overrightarrow{x} = \cos\left(-\frac{\pi}{2} - \theta\right) = -\sin(\theta)$$

$$\overrightarrow{v} \cdot \overrightarrow{y} = \cos(-\theta) = \cos(\theta)$$

24

Changement de base

$$\overrightarrow{u}\cdot\overrightarrow{x}=\cos\left(\theta\right)\quad\overrightarrow{u}\cdot\overrightarrow{y}=\sin\left(\theta\right)\quad\overrightarrow{v}\cdot\overrightarrow{x}=-\sin\left(\theta\right)\quad\overrightarrow{v}\cdot\overrightarrow{y}=\cos\left(\theta\right)$$

Exemple

$$\overrightarrow{V} = a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w}$$

dans la base $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ s'écrira

$$\overrightarrow{V} = \left(\overrightarrow{V} \cdot \overrightarrow{x}\right) \overrightarrow{x} + \left(\overrightarrow{V} \cdot \overrightarrow{y}\right) \overrightarrow{y} + \left(\overrightarrow{V} \cdot \overrightarrow{z}\right) \overrightarrow{z}$$
$$= \left(a\cos\left(\theta\right) - b\sin\left(\theta\right)\right) \overrightarrow{x} + \left(a\sin\left(\theta\right) + b\cos\left(\theta\right)\right) \overrightarrow{y} + c\overrightarrow{z}$$

dans la base $(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z})$. Par contre, quelle que soit la base choisie pour exprimer les coordonnées de \overrightarrow{V} , sa norme sera toujours identique :

$$\|\overrightarrow{V}\| = \sqrt{a^2 + b^2 + c^2}$$

Distance d'un point à une droite

Soit \mathscr{D} une droite passant par le point A et dirigée par le vecteur non nul \overrightarrow{u} . Alors :

$$M \in \mathscr{D} \iff \exists \lambda \in \mathbb{R}, \ \overrightarrow{AM} = \lambda \ \overrightarrow{u}$$

Proposition (Distance point-droite)

Soit M un point quelconque de $\mathscr E$ et $\mathscr D$ une droite passant par le point A et dirigée par le vecteur \overrightarrow{u} . La distance du point M à la droite $\mathscr D$ est définie par :

$$d\left(M,\mathscr{D}\right) = \frac{\|\overrightarrow{u} \wedge \overrightarrow{AM}\|}{\|\overrightarrow{u}\|}$$

Distance d'un point à un plan

Soit $\mathscr P$ un plan contenant le point A et de normale définie par le vecteur non nul \overrightarrow{n} . Alors :

$$M \in \mathscr{P} \iff \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

Proposition (Distance point-plan)

Soit M un point quelconque de $\mathscr E$ et $\mathscr P$ un plan contenant le point A et de normale \overrightarrow{n} . La distance du point M au plan $\mathscr P$ est définie par :

$$d\left(M,\mathscr{P}\right) = \frac{|\overrightarrow{n} \cdot \overrightarrow{AM}|}{\|\overrightarrow{n}\|}$$

Décomposition orthogonale d'un vecteur

Soit \mathscr{P} un plan de normale $\overrightarrow{n} \neq \overrightarrow{0}$. En exploitant la formule du double produit vectoriel selon

$$(\overrightarrow{u} \wedge \overrightarrow{n}) \wedge \overrightarrow{n} = (\overrightarrow{u} \cdot \overrightarrow{n}) \overrightarrow{n} - (\overrightarrow{n} \cdot \overrightarrow{n}) \overrightarrow{u}$$

il vient que l'on peut décomposer tout vecteur non nul \overrightarrow{u} selon :

$$\overrightarrow{u} = \frac{1}{\|\overrightarrow{n}\|^2} \left[(\overrightarrow{n} \cdot \overrightarrow{u}) \overrightarrow{n} + (\overrightarrow{n} \wedge \overrightarrow{u}) \wedge \overrightarrow{n} \right]$$

en un vecteur colinéaire à la normale \overrightarrow{n} et en un vecteur parallèle au plan $\mathscr{P}.$

Pour finir...

Une « nouvelle » version du théorème de Pythagore!

$$\left(\frac{|\overrightarrow{u}\cdot\overrightarrow{v}|}{\|\overrightarrow{u}\|\times\|\overrightarrow{v}\|}\right)^2 + \left(\frac{\|\overrightarrow{u}\wedge\overrightarrow{v}\|}{\|\overrightarrow{u}\|\times\|\overrightarrow{v}\|}\right)^2 = 1$$

N. Mesnier, lycée international Jean Perrin, Lyon