Fiche 24: Polynômes.

Exercice 1

Que peut-on dire ...

- 1. ... d'un polynôme qui a une infinité de racines?
- 2. ... de 2 polynômes égaux en une infinité de points?
- 3. ... d'un polynôme périodique?

Exercice 2

Trouver toutes les racines \mathbb{C} , en déduire les décomposition irréductibles sur \mathbb{R} et \mathbb{C} de :

$$Q = X^6 + X^3 + 1, \ R = X^6 - X^5 + X^4 - X^3 + X^2 - X + 1$$

Exercice 3

Calculer les restes de la division euclidienne du polynôme X^n par les polynômes : $X^2 + 3X + 2$, $X^2 + X + 1$ puis $(X - 1)^2$.

Exercice 4

Déterminer pour quelles valeurs de $n \in \mathbb{N}$ le polynôme : $P = X^2 + X + 1$ divise le polynôme $Q = X^{2n} + X^n + 1$.

Même question avec les polynômes $P = X^4 + X^3 + X^2 + X + 1$ et $Q = X^{4n} + X^{3n} + X^{2n} + X^n + 1$.

Exercice 5

On considère la suite (T_n) de polynômes donnés par : $T_0=1,\,T_1(X)=X$ et, si $n\in\mathbb{N}$:

$$T_{n+1}(X) = 2X.T_n(X) - T_{n-1}(X)$$

- 1. Préciser T_2, \ldots, T_5 .
- 2. Préciser $\deg(P_n)$ et le coefficient dominant de P_n pour $n \in \mathbb{N}$.
- 3. Montrer que si $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$T_n(\cos(\theta)) = \cos(n\theta)$$

- 4. Si $n \in \mathbb{N}$, résoudre l'équation $T_n(\cos(\theta)) = 0$.
- 5. En déduire que, si $n \in \mathbb{N}$, les racines de T_n et sa factorisation réelle.
- 6. Utiliser T_5 pour déterminer $\cos(\pi/10)$.

Exercice 6

Montrer que $\alpha = 2\cos\frac{2\pi}{7}$ est racine de $P = X^3 + X^2 - 2X - 1$. Quelles sont les autres racines?

Montrer que α est irrationnel.