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Modélisation et paramétrage

des mécanismes

Objectifs

La finalité de ce cours est de modéliser les relations géométriques entre les
solides des ensembles mécaniques et de paramétrer les mouvements possibles
entre solides afin de déterminer les liens entre les mouvements d’entrée et de
sortie des mécanismes de transformation de mouvement (bielle manivelle, croix
de malte, pompe à pistons axiaux et radiaux, etc.).
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1 Introduction

Le mot cinématique dérive du grec kinêma, kinêmatos qui signifie mouvement et définit
la partie de la mécanique qui étudie les mouvements indépendamment des causes qui les
provoquent. Dans ce cours, nous adopterons le point de vue de la mécanique classique (non
relativiste) pour laquelle il existe une notion de simultanéité temporelle absolue permettant
de découpler les notions d’espace et de temps.

À chaque observateur on associe un espace affine euclidien à trois dimensions E
(espace de points orienté muni d’une mesure de distance) et un espace de temps absolu
paramétré sur l’axe des réels. La notion d’écoulement du temps, de manière régulière et
irréversible, est donnée à un observateur par des mouvements particuliers appelés horloges
(balancier de pendule, vibrations entretenues électriquement d’un quartz ou vibrations
d’atomes de césium dans le vide pour les horloges atomiques). Par le choix d’un instant
initial et d’une base de temps orientée vers le futur on peut définir une chronologie.
On mesure le temps en représentant l’état d’une horloge par une coordonnée de temps
appelée la date, désignée par la lettre t. La durée entre deux instants successifs I1 et I2,
de coordonnées de temps respectives t1 et t2, est définie par :

durée (I1, I2) = |t2 − t1|

L’unité de la durée est la seconde (s), définie à partir de la fréquence pour laquelle la
fluorescence des atomes de césium 133 est maximale et fixée à 9 192 631 770 Hz.

De façon indépendante, chaque observateur peut aussi localiser chaque événement dans
l’espace physique (ou d’observation) par le choix d’un système de coordonnées associé au
choix d’un repère spatial, c’est-à-dire un ensemble point origine et trois vecteurs de base.
La notion de distance est indépendante d’un tel choix et est définie entre deux points A et
B par la norme du vecteur

−−→
AB :

distance (A,B) = ∥
−−→
AB ∥

L’unité de la distance est le mètre (m), actuellement défini comme la longueur du chemin
parcouru par la lumière dans le vide en 1/299792458 seconde.

Définition 1.1 (Mouvement)
On appelle mouvement toute évolution du placement d’un corps matériel dans un espace
d’observation au cours du temps.

P •

Corps matériel

M

E

M(t1)

•P (t1)
M(t2)

•P (t2)

Placement à t1

Placement à t2

Figure 1 – Illustration du placement d’un corps matériel M dans un espace d’obser-
vation E aux instants t1 et t2. À chaque instant t, P (t) est le point de E occupé par la
particule P et M(t) représente le domaine occupé par le corps matériel.

3



Un corps matériel, qu’il soit fluide (liquide ou gaz) ou solide, est défini par l’ensemble
des particules ou points matériels qui le constituent. En tant qu’ensemble de particules,
un corps matériel a la même définition (constitution) pour tous les observateurs et existe
donc indépendamment de la région de l’espace qu’il occupe à un instant donné de son
évolution. On appelle placement l’identification (bijection) effectuée par un observateur
qui, à un instant donné t, associe à chaque point matériel P d’un corps matériel M un
point P (t) dans son espace d’observation E (figure 1).

Si le placement se réfère à une description purement géométrique, pour parler de
mouvement, il est nécessaire d’ajouter une notion de temps. Les grandeurs étudiées
s’appellent déplacement, trajectoire, vitesse et accélération et dépendent toutes du choix
d’un référentiel (l’association d’un repère d’espace et d’une chronologie).

1.1 Notion de solide indéformable

Dans un cadre de modélisation, les pièces d’un mécanisme seront appelées solides.
Lorsqu’un solide est soumis à des efforts, il peut se déformer de façon plus ou moins
importante. Le plus souvent, les déformations qu’il subit peuvent être considérées comme
négligeables et on fera l’hypothèse que tous les solides étudiés sont rigides ou indéformables.

Définition 1.2 (Solide indéformable)
Un solide S est dit rigide ou indéformable si et seulement si au cours de son évolution les
distances entre tous les points qui le constituent sont invariables ; ce qui se traduit par :

∀A,B ∈ S2,∀t ∈ R,
∥
∥
∥
−−→
AB (t)

∥
∥
∥ = cste

avec t ∈ R un paramètre d’évolution (le temps).

E

•A(t1)
•

B(t1)

•
C(t1)

S(t1)

•
A(t2)

•

B
(t

2
)

•
C(t2)

S(t2)

•
A(t3)

•

B
(t

3 )•
C(t3)

S(t3)

Figure 2 – Différents placements d’un solide indéformable pour lequel les distances entre
tous ses points restent constantes.

Le caractère rigide ou indéformable d’un solide permet de le modéliser par un espace
affine euclidien tridimensionnel, rigide par définition. Or un espace euclidien peut toujours
être rapporté à un repère. On associera donc à chaque solide (indéformable) Si d’un
mécanisme, un repère spatial constitué d’un point de l’espace associé au solide A ∈ Si
et d’une base Bi = (−→xi ,

−→yi ,
−→zi ) que l’on prendra toujours orthonormée directe. On le note

Ri = (A,−→xi ,
−→yi ,
−→zi ).
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•A
•
B

•
C

(a) Solide indéformable

•
A •

B

•
C

(b) Modèle de solide indéformable

•
A

−→yi

−→zi

−→xi
(c) Choix d’un repère

Figure 3 – Association d’un repère à un solide indéformable.

Il est important de noter que l’association d’un repère spatial à un solide indéformable
revient simplement à choisir un système de coordonnées permettant de positionner tous
ses points de façon unique et constante au cours du temps. Seulement, l’association d’un
repère à un solide n’est absolument pas unique et il existe une infinité de possibilités, tant
par le choix du point du solide comme origine du repère que par le choix de trois vecteurs
de base. S’il est toujours possible de passer d’un repère à un autre, nous verrons dans ce
qui suit qu’en pratique il est des choix qui sont plus judicieux que d’autres (figure 4).

−→xi

−→yi
−→zi

A

Si

−→xi

−→yi−→zi

B

Si

(a) Choix judicieux (b) Choix quelconque
Figure 4 – Exemples d’association d’un repère à un solide.

1.2 Notion de référentiel

En introduisant la notion de solide indéformable, nous venons de définir les objets dont
on souhaite étudier les mouvements. Or un mouvement est une notion relative qui met
nécessairement en jeu deux entités indissociables :

— un objet observé, dans notre cas un solide indéformable ;
— un référentiel d’étude du mouvement, c’est-à-dire un observateur muni d’une horloge.

Dans ce qui précède, nous avons montré que l’espace associé à un solide indéformable peut
être rapporté à un repère (orthonormé direct). On peut donc en déduire que le caractère
indéformable des solides leur confère une nature géométrique (conservation des angles et
distances) similaire à celle de l’espace physique (ou d’observation). Considérant de plus
que le temps agit comme un paramètre immuable et indépendant de l’espace ou des objets
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physiques, il semble possible d’étendre la notion de référentiel à toute association d’un
repère (d’espace rigide) et d’une chronologie.

Référentiel =
{

Point origine,Base spatiale
︸ ︷︷ ︸

Repère

; Instant initial,Base de temps
︸ ︷︷ ︸

Chronologie

}

Parmi l’ensemble des choix de référentiels possibles, on distinguera :

— les référentiels galiléens ou référentiels d’inertie dont l’existence est postulée par
la première loi de Newton. Ils sont dits absolus car associés au choix d’un repère
fixe dans l’espace physique ;

— les référentiels mobiles associés à un observateur (muni d’une horloge) en
mouvement dans l’espace physique. Ils correspondent au choix d’un repère mobile
dans l’espace physique ce qui signifie que le repère associé à chaque solide peut servir
de composante spatiale d’un référentiel d’étude du mouvement d’un autre solide.

Remarque 1.1 (Repère et référentiel)
Comme en mécanique newtonienne, le temps s’écoule de la même façon dans tous les
référentiels, on choisira toujours une seule chronologie de telle sorte qu’un changement
de référentiel se limite à un changement de repère. On fera donc souvent l’abus de
langage : Repère ≈ Référentiel.

2 Placement d’un solide dans un référentiel

La phase préalable à toute étude de cinématique consiste à définir des paramètres
permettant de décrire la position relative des solides. Cette étape indispensable prend le
nom de paramétrage. Comme à chaque solide est associé un repère, placer un solide dans
un référentiel revient à créer un paramétrage entre deux repères.

−→x1−→y1

−→z1

P

S1

S0

−→y0

−→x0

−→z0

O

−→
OP (t)

(O,−→x0,
−→y0 ,
−→z0 ) (P,−→x1,

−→y1 ,
−→z1 )

Position
(3 translations)

Orientation
(3 rotations)

Figure 5 – Placement d’un repère associé à un avion (Airbus A380) dans un repère
associé à un observateur terrestre et changement de repère associé.
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On note R1 = (P,−→x1,
−→y1 ,
−→z1 ) le repère associé à un solide dont on cherche à décrire le

mouvement par rapport à un repère de référence noté R0 = (O,−→x0,
−→y0 ,
−→z0 ). Le placement

du repère R1 par rapport au repère R0 requiert (figure 5) :

— trois paramètres de position associés à la différence de position des points origines ;
— trois paramètres d’orientation associés à la différence d’orientation des trois vecteurs

de chacune des deux bases.
Dans la base canonique de R

3, les trois paramètres de
position sont trois longueurs et les trois paramètres d’orien-
tation sont trois angles. Les variations temporelles des
paramètres de position permettent de décrire des mouve-
ments de translation et celles des paramètres d’orientation
des mouvements de rotation. Chaque possibilité de mou-
vement est appelée degré de liberté. Il en existe six au
maximum entre deux solides : trois translations et trois
rotations. Leur nombre correspond au nombre de para-
mètres scalaires indépendants nécessaires (et suffisants)
pour paramétrer le placement d’un solide dans un repère.

•O

−→x0

−→y0

−→z0

Figure 6 – Les six degrés
de liberté.

2.1 Position d’un point d’un solide dans un référentiel

Définition 2.1 (Vecteur position)
La position instantanée d’un point M(t) appartenant à un solide S en mouvement par
rapport à un repère R0, d’origine O, est définie par le vecteur position

−−−→
OM (t).

Pour exprimer les composantes de ce vecteur, il est indispensable de disposer d’un
système de coordonnées pour l’espace associé à R0. La solution la plus naturelle est
d’utiliser un système de coordonnées cartésiennes associé à la base canonique de R

3,
que l’on notera ici (−→x0,

−→y0 ,
−→z0 ). Mais deux autres systèmes de coordonnées sont aussi

couramment employés et définis ci-après.

2.1.1 Coordonnées cartésiennes

Dans un système de coordonnées cartésiennes, la posi-
tion instantanée d’un point M(t) ∈ S en mouvement
par rapport à un repère R0, d’origine O, est définie
par les trois coordonnées :

x(t) ∈ R, y(t) ∈ R et z(t) ∈ R

de sorte que le vecteur position s’écrive :

−−−→
OM (t) = x(t)−→x0 + y(t)−→y0 + z(t)−→z0

dans la base canonique de R
3, notée (−→x0,

−→y0 ,
−→z0 ).

•O

−→x0

−→y0

−→z0

•M

x(t)–

y(t)

z(t)–

Figure 7 – Coordonnées
cartésiennes.

7



2.1.2 Coordonnées cylindriques

Dans un système de coordonnées cylindriques (ou po-
laires), la position instantanée d’un point M(t) ∈ S
en mouvement par rapport à un repère R0, d’origine
O, est définie par les trois coordonnées :

r(t) ∈ R
+, θ(t) ∈ [0, 2π[ et z(t) ∈ R

de sorte que le vecteur position s’écrive :

−−−→
OM (t) = r(t)−→er + z(t)−→z0 ,

−→er
déf.
= −→er (θ(t))

dans la base (−→er ,
−→eθ ,
−→z0 ). En projetant le vecteur radial

−→er , fonction de l’angle θ(t), dans la base canonique
de R

3, on peut établir le lien avec les coordonnées
cartésiennes :







x(t) = r(t) cos (θ(t))

y(t) = r(t) sin (θ(t))

z(t) = z(t)

•O

−→x0

−→y0

−→z0

•M

z(t)–

r(t) •

−→erθ(t)

−→z0

−→x0

−→y0

−→er

−→eθ

θ(t)
.

Figure 8 – Coordonnées
cylindriques.

2.1.3 Coordonnées sphériques

Dans un système de coordonnées sphériques, la posi-
tion instantanée d’un point M(t) ∈ S en mouvement
par rapport à un repère R0, d’origine O, est définie
par les trois coordonnées :

r(t) ∈ R
+, θ(t) ∈ [0, 2π[ et φ(t) ∈ [0, π]

de sorte que le vecteur position s’écrive :

−−−→
OM (t) = r(t)−→er ,

−→er
déf.
= −→er (θ(t), φ(t))

dans la base (−→er ,
−→eθ ,
−→eφ). En projetant le vecteur radial

−→er , fonction des angles θ(t) et φ(t), dans la base cano-
nique de R3, on peut établir le lien avec les coordonnées
cartésiennes :







x(t) = r(t) cos (θ(t)) sin (φ(t))

y(t) = r(t) sin (θ(t)) sin (φ(t))

z(t) = r(t) cos (φ(t))

•O

−→x0

−→y0

−→z0

•Mr(
t)

−→er

θ(t)

φ(t)

Figure 9 – Coordonnées
sphériques.
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2.2 Orientation d’un solide dans un référentiel

On cherche ici à paramétrer la position relative de deux bases orthonormées directes,
l’une par rapport à l’autre. Plusieurs solutions sont possibles, mais elles font toutes
intervenir trois rotations successives et deux bases orthonormées directes intermédiaires.
La plus courante, basée sur les angles d’Euler, est construite par analogie avec le
mouvement de la Terre autour de trois étoiles lointaines formant un repère galiléen. Une
autre possibilité est d’utiliser les angles de Cardan ou angles nautiques, comme en
aéronautique.

2.2.1 Angles d’Euler

Ce paramétrage fait intervenir trois angles de rotations planes successives dits de
précession ψ, de nutation θ et de rotation propre φ. La première rotation permet de définir
l’axe nodal ou ligne des nœuds, c’est-à-dire l’axe (O,−→u ) pour un repère centré au point O.

(−→x0,
−→y0 ,
−→z0 )

Rot(−→z0,ψ)
−−−−−−→
Précession

(−→u ,−→v ,−→z0 )
Rot(−→u ,θ)
−−−−−→

Nutation
(−→u ,−→w ,−→z )

Rot(−→z ,φ)
−−−−−−−−→
Rotation propre

(−→x ,−→y ,−→z )

La composition de rotations planes successives permet de dessiner des figures géométrales
(ou de projection) qui sont indispensables pour effectuer les calculs de projection pour la
résolution des problèmes.

−→z0

−→x0

−→y0

−→u

−→v

ψ
.

Précession

−→u
−→v

−→z0

−→w

−→z

θ
.

Nutation

−→z
−→u

−→w

−→x

−→y

φ
.

Rotation propre

Figure 10 – Les trois angles d’Euler.

Les angles d’Euler sont très souvent utilisés pour représenter l’orientation d’un solide
libre dans un espace d’observation de par leur simplicité d’utilisation. Cependant, ils
présentent des points singuliers qui empêchent le calcul de l’orientation dans certaines
positions. En effet lorsque la deuxième rotation, autour de l’axe −→u , est nulle ou multiple
de π, il est impossible de différencier les deux autres rotations car dans ce cas les axes −→z0

et −→z sont confondus.

2.2.2 Angles de Cardan

Ce paramétrage est basé sur une orientation privilégiée définie à partir de la direction
longitudinale (de l’avion) notée −→x , de la direction transversale notée −→y et de la direction
verticale ascendante notée −→z . Il fait intervenir trois angles de rotations planes successives
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dits de roulis γ, de tangage β et de lacet α, parfois abrégés RTL.

(−→x0,
−→y0 ,
−→z0 )

Rot(−→z0,α)
←−−−−−−

Lacet
(−→w ,−→u ,−→z0 )

Rot(−→u ,β)
←−−−−−−

Tangage
(−→x ,−→u ,−→v )

Rot(−→x ,γ)
←−−−−−

Roulis
(−→x ,−→y ,−→z )

−→z0

−→x0

−→y0

−→w

−→u

α
.

Lacet

−→u
−→z0

−→w

−→v

−→x

β
.

Tangage

−→x
−→u

−→v

−→y

−→z

γ
.

Roulis

Figure 11 – Les trois angles de Cardan (ou angles nautiques).

Les angles de Cardan sont très utilisés en aéronautique et la convention aérospa-
tiale considère d’ailleurs la transformation « 3–2–1 » comme transformation de référence
(figure 12b). On notera enfin que, comme les angles d’Euler, les angles de Cardan

présentent des points singuliers connus sous le terme de « blocages de Cardan ». Ces
points singuliers apparaissent lorsque le deuxième angle β est égal à ±π/2 et le seul moyen
de les éviter est de changer de référence à leur approche.

P

Axe de lacet

Axe de roulisAxe de tangage

(a) Axes nautiques

x⃗0

y⃗0

α

β

γ

z⃗0

w⃗

u⃗

x⃗

(b) Angles nautiques

Figure 12 – Définition des axes nautiques (a) et des trois angles nautiques (b) utilisés
pour paramétrer l’orientation des avions selon les normes DIN 9300.

3 Modélisation et paramétrage des mécanismes

Les systèmes étudiés peuvent être constitués de une à plusieurs milliers de pièces
liées entre elles pour transmettre des efforts ou des mouvements. Dans cette partie, nous
présentons les outils permettant de modéliser et paramétrer ces systèmes en vue d’une
étude cinématique.
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3.1 Contacts entre solides

Nous avons défini dans ce qui précède le placement libre d’un solide par rapport à un
autre, c’est-à-dire possédant six degrés de liberté. Dans la plupart des mécanismes, les
solides sont liés entre eux et les mouvements relatifs sont limités par la nature des surfaces
en contact. La nature géométrique de ces surfaces de contact — dites fonctionnelles — va
autoriser certains mouvements et en interdire d’autres. C’est à partir de l’analyse de ces
surfaces que l’on choisit de modéliser un contact entre deux pièces par une (ou plusieurs)
liaison(s) cinématique(s). Les différentes associations de surfaces sont présentées dans la
table 1.

Plan Cylindre Sphère

Plan

Contact plan
Contact linéaire

rectiligne (droite)
Contact ponctuel

Cylindre

Contact cylindrique
Contact linéaire

annulaire (cercle)

Sphère

Contact sphérique

Table 1 – Différentes associations de surfaces élémentaires et géométrie des contacts.

Chaque mouvement autorisé par la géométrie du contact doit être associé à un paramètre
géométrique variable. Si le contact entre deux pièces n’autorise aucun mouvement, les
pièces sont dites en liaison complète.

Définition 3.1 (Classe d’équivalence)
Une classe d’équivalence est un ensemble de pièces en liaison complète ou encastrement,
démontable ou non. Toutes les pièces faisant partie d’une même classe d’équivalence ont
donc le même mouvement lors du fonctionnement du mécanisme.
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3.2 Liaisons normalisées

Les liaisons permettent de supprimer un certain nombre de degrés de liberté pour satis-
faire une exigence de mouvement donnée. Les différentes liaisons simples sont construites
par association des six contacts élémentaires. Les modèles de liaisons sont basés sur une
géométrie parfaite, c’est-à-dire sans jeu. Ils sont répertoriés dans ce qui suit avec un
paramétrage adapté donné dans la table 2.

Liaison encastrement La liaison encastrement est une liaison complète
entre deux pièces, sans aucun degré de liberté.

Liaison glissière Une liaison glissière entre deux solides S1 et S2 autorise
un mouvement de translation suivant une seule direction. Cette liaison ne
possède donc qu’un seul degré de liberté.

Liaison pivot Une liaison pivot entre deux solides S1 et S2 autorise un
mouvement de rotation autour d’un seul axe. Cette liaison ne possède donc
qu’un seul degré de liberté.

Liaison pivot glissant Une liaison pivot glissant entre deux solides S1 et
S2 autorise deux mouvements : un mouvement de rotation et un mouvement
de translation suivant le même axe. Cette liaison possède donc deux degrés
de liberté.

Liaison appui-plan Une liaison appui-plan entre deux solides S1 et S2

permet de bloquer une translation et deux rotations. Cette liaison possède
donc trois degrés de liberté.

Liaison sphérique Une liaison sphérique entre deux solides S1 et S2

autorise toutes les rotations mais aucune translation. Cette liaison possède
donc trois degrés de liberté.

Liaison sphérique à doigt Une liaison sphérique à doigt entre deux
solides S1 et S2 correspond à une liaison sphérique pour laquelle une des
trois rotations a été bloquée. Cette liaison ne possède donc que deux degrés
de liberté.

Liaison cylindre-plan Une liaison cylindre-plan entre deux solides S1 et
S2 autorise deux rotations et deux translations. Cette liaison possède donc
quatre degrés de liberté.

Liaison sphère-cylindre Une liaison sphère-cylindre entre deux solides
S1 et S2 correspond à une liaison sphérique pour laquelle une des trois
translations a été libérée. Cette liaison possède donc quatre degrés de liberté.

Liaison sphère-plan Une liaison sphère-plan entre deux solides S1 et
S2 ne bloque qu’une translation selon la normale au plan. Tous les autres
mouvements sont possibles. Cette liaison possède donc cinq degrés de liberté.
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Liaison hélicoïdale Une liaison hélicoïdale entre deux solides est caracté-
risée par son pas p, à gauche ou à droite, tel que les mouvements de rotation
et de translation suivant son axe soient liés. Cette liaison possède donc un
seul degré de liberté.

3.3 Graphe de structure

Ce graphe formalise l’ensemble des mouvements possibles d’un mécanisme. Pour le
représenter, il faut tout d’abord chercher les classes d’équivalence du système, c’est-à-dire
les ensembles de pièces qui n’ont pas de mouvement relatif entre elles. Chaque classe
d’équivalence est représentée par un sommet du graphe et chaque arc entre les sommets
représente la liaison entre ces classes. On rappelle que les liaisons sont définies à partir des
surfaces de contact. Si deux classes d’équivalence n’ont pas de contact géométrique, aucun
arc ne relie les deux sommets.

1 2

L12 Liaison

Classes d’équivalence

Figure 13 – Éléments du graphe de structure.

On peut détailler les différentes topologies de graphes de structures (ou de liaisons) que
l’on peut rencontrer à partir de l’analyse des cycles. On appelle cycle (ou boucle ou chaîne
fermée) un chemin fermé extrait d’un graphe de structure tel qu’en le parcourant, on ne
rencontre pas deux fois le même sommet. On appelle nombre cyclomatique d’un graphe
de structure, noté γ, le nombre de cycles indépendants qui le constituent. La théorie des
graphes montre que ce nombre ne dépend que du nombre de sommets et du nombre d’arcs
et s’écrit :

γ = L− S + 1

où L est le nombre de liaisons et S le nombre de solides. Pour chaque cycle, on peut écrire
deux équations de fermeture géométrique : une équation vectorielle linéaire associée aux
différences de position des centres des repères et une fermeture angulaire associée aux
différences d’orientation des vecteurs de base. La projection de chacune de ces équations
conduit à trois équations scalaires dans le cas d’un problème plan.

3.3.1 Chaîne ouverte

Un mécanisme sans cycle a un nombre cyclomatique nul :
γ = 0. Ce genre de graphe est typique de la robotique. On
peut avoir un déplacement maximal en fin de chaîne avec un
minimum de liaisons.

1 2 3

L12

L23
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Liaison
Schématisation

spatiale
Schématisation

plane
Repère local Mobilité(s)

Glissière −→u

−→u
direction −→u 1 translation

Pivot
A

−→u

A −→u
axe (A,−→u ) 1 rotation

Pivot
glissant

A

−→u

A −→u
axe (A,−→u )

1 translation
1 rotation

Hélicoïdale
A

−→u
A −→u

axe (A,−→u )
1 translation
& 1 rotation
liées

Appui-plan

−→n −→n

normale −→n
2 translations
1 rotation

Sphérique
C C

centre C 3 rotations

Sphérique à
doigt

C C
centre C 2 rotations

Cylindre-
plan A

−→u2

−→n1
normale

(A,−→n1)
+ axe (A,−→u2)

2 translations
2 rotations

Sphère-
cylindre −→u

C
C −→u centre C

+ axe (C,−→u )
1 translation
3 rotations

Sphère-plan

−→n C −→n C normale
(C,−→n )

2 translations
3 rotations

Table 2 – Liaisons élémentaires.
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3.3.2 Chaîne fermée

Dans ce type de structure, les liaisons permettent de relier
l’ensemble des classes d’équivalence en un seul cycle fermé :
γ = 1. Les paramètres des liaisons du système ne sont pas
indépendants. On peut alors écrire deux équations vectorielles
de fermeture géométrique : une linéaire et une angulaire.

1 2

3

L12

L23

L13

3.3.3 Chaîne complexe

Dans la pratique, les systèmes sont souvent basés sur des
chaînes complexes. On peut alors faire apparaître plusieurs
cycles fermés : γ > 1. Dans l’exemple on a 3 cycles, mais il
suffit d’en parcourir 2 pour être passé par tous les solides et
toutes les liaisons, donc seuls γ = 5− 4 + 1 = 2 cycles sont
indépendants. On peut alors écrire 2γ équations de fermeture
géométrique conduisant à 6γ équations scalaires.

1 2

34

L12

L23

L34

L14 L
2
4

3.4 Schéma cinématique d’un mécanisme

Le schéma cinématique minimal est un outil de communication technique qui doit
traduire la structure d’un système d’un point de vue mécanique. Il permet d’exprimer
la fonction globale d’un système technique sans préjuger des solutions retenues, en ex-
plicitant l’utilité des différentes liaisons entre les pièces et justifiant les mouvements des
pièces et composants technologiques constituant le mécanisme étudié. Le fonctionnement
cinématique est traduit suivant une représentation graphique des liaisons et éléments de
contact. Un « bon » schéma cinématique doit être clair, lisible, précis et concis, en faisant
apparaître de façon évidente le principe de fonctionnement. C’est pour cette raison que
l’on va réduire le schéma à sa plus simple expression afin de faire apparaître clairement les
mobilités contenues dans ce mécanisme en vue d’une étude cinématique.

Méthodologie de construction du schéma cinématique Commençons par préciser
que le mécanisme que l’on se propose d’étudier est en général décrit par un certain nombre
de documents (plan d’ensemble, nomenclature, dessins de définition, notice, etc.) à partir
desquels il faut successivement :

1. Identifier les entrées et sorties du mécanisme, c’est-à-dire :

— les pièces qui reçoivent un mouvement de l’extérieur (entrées) ;
— les pièces qui transmettent un mouvement vers l’extérieur (sorties).

2. Identifier les chaînes cinématiques internes au mécanisme, c’est-à-dire les pièces qui
interviennent successivement dans la transmission d’un mouvement ;

3. Déterminer les classes d’équivalence et les nommer avec le nom de la pièce la plus
importante.

4. Identifier la nature des contacts entre les différentes classes d’équivalence et associer
à un contact ou un ensemble de contacts un modèle de liaison élémentaire.
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5. Construire le graphe de structure.
6. Construire le schéma cinématique (d’architecture) en trois étapes :

— mise en place des paramètres des liaisons (points, axes) sur un schéma vierge ;
— représentation des schémas normalisés des liaisons ;
— raccord entre les liaisons.

7. Simplifier le schéma cinématique en supprimant les liaisons redondantes et/ou en
remplaçant des ensembles de liaisons par des liaisons cinématiquement équivalentes
afin d’obtenir un schéma cinématique minimal.

Remarque 3.1 (Représentation du schéma cinématique minimal)
Dans la mesure du possible, on se limitera à une représentation plane du schéma
cinématique minimal si elle est suffisante pour décrire le fonctionnement cinématique
du mécanisme étudié.

Exemple 3.1 (Moteur thermique d’aéromodélisme)
Le support de l’étude est un moteur thermique deux temps utilisé en aéromodélisme.
On donne ci-après le dessin d’ensemble du système, que l’on appellera micromoteur.

1. Pour identifier l’entrée et la sortie, commençons par rappeler qu’un moteur
thermique permet de créer une énergie mécanique de rotation à partir d’une
explosion. L’entrée se fera donc sur le piston (1) et la sortie sur l’hélice (19) liée
au vilebrequin (15).

2. Le mécanisme ne comporte qu’une seule chaîne cinématique de type transmission
de puissance passant successivement par le piston (1), l’axe (3), la bielle (9) et le
vilebrequin (15).

3. Pour identifier les classes d’équivalence, on recherche toutes les pièces en liaison
complète que l’on colorie sur le plan d’ensemble avec une même couleur (par
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classe d’équivalence). Il vient quatre classes d’équivalence :

— Carter
S0 = {6, 7, 8, 11, 13, 37, 38,

39, 40, 41, 43}
— Vilebrequin

S1 = {10, 15, 17, 19, 20, 21}
— Bielle S2 = {9}
— Piston S3 = {1, 2, 3, 5}

4. Pour identifier la nature des liaisons entre les différentes classes d’équivalence, il
est nécessaire d’identifier la nature des contacts. L’analyse du dessin d’ensemble
a permis d’identifier :

— un contact cylindre-cylindre entre S0 et S3 que l’on peut modéliser par une
liaison pivot glissant d’axe (A,−→x ) ;

— un contact cylindre-cylindre entre S2 et S3 que l’on peut modéliser par une
liaison pivot glissant d’axe (A,−→z ) ;

— un contact cylindre-cylindre et deux contacts plan-plan (un de chaque côté)
entre S1 et S2 que l’on peut modéliser par une liaison pivot d’axe (B,−→z ) ;

— deux contacts sphériques au niveau des roulements à billes (12) et (16) que
l’on peut modéliser pour chacun par une liaison sphérique, respectivement
centrée au point C et au point D.

5. Pour réaliser le graphe de structure, on place quatre nœuds correspondants aux
classes d’équivalence que l’on relie avec les cinq arcs correspondants aux liaisons
identifiées.

S0 S1

S2S3

Sphérique en C

Sphérique en D Pivot
d’axe (B,−→z )

Pivot glissant d’axe
(A,−→z )

Pivot glissant
d’axe (A,−→x )

C2

C1

Avec cinq liaisons (L = 5) et quatre solides (S = 4), ce graphe de structure
comporte

γ = 5− 4 + 1 = 2

cycles indépendants (notés C1 et C2 sur le graphe). Les deux liaisons entre S0 et
S1 sont dites en parallèles.

6. On peut réaliser le schéma cinématique avec un point de vue tridimensionnel.
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S3

S2

−→x

−→y

B

O

CD

−→z

A

S1

−→x

B

O

−→z S0

A

S0

S1

S3

S2

−→y

Simplification

−→x

O
−→y

S3

S2

S1

B

A

S0

7. Le point de vue tridimensionnel permet d’identifier immédiatement que si notre
étude ne concerne que le fonctionnement cinématique du mécanisme, alors les
deux liaisons sphériques peuvent être associées pour former une seule liaison pivot
d’axe (O,−→z ). (Nous reviendrons sur cette notion dans le cours de théorie des

mécanismes). À partir de cette simplification, il est clair qu’une schématisation
plane suffira amplement à décrire le fonctionnement cinématique du système
et c’est cette dernière que l’on appellera le schéma cinématique minimal du
micromoteur.

3.5 Loi « entrée-sortie » d’un mécanisme

À partir d’un schéma cinématique paramétré d’un mécanisme comportant au moins
un cycle, on peut réaliser autant de fermetures géométriques que de cycles indépendants
en écrivant pour chaque cycle deux relations géométriques vectorielles (une linéaire et
une angulaire) faisant intervenir les points caractéristiques du schéma cinématique. En
projetant ensuite les deux expressions obtenues pour chaque cycle suivant les trois vecteurs
d’une même base, on peut déterminer autant de relations que de cycles entre les paramètres
géométriques. Quand cette relation permet de relier un paramètre d’entrée et un paramètre
de sortie, la relation sera une loi « entrée-sortie ».

Exemple 3.2 (Moteur thermique d’aéromodélisme)

Le schéma cinématique minimal du mi-
cromoteur établi fait apparaître un seul
cycle (C1). Il est donc possible d’écrire
deux équations vectorielles de fermeture
géométrique. Pour écrire ces équations,
il est nécessaire de paramétrer le schéma
cinématique minimal avec :

S0 S1

S2S3

Pivot d’axe (O,−→z )

Pivot
d’axe (B,−→z )

Pivot glissant d’axe (A,−→z )

Pivot glissant
d’axe (A,−→x )

C1
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— les repères associés à chaque solide ;
— la définition des caractéristiques géométriques utiles de chaque solide ;
— le paramétrage de chaque liaison.

−→x = −→x3

−→y
−→x1

−→x2

λ

θ10 θ32

θ21

O −→z

B

A

S1 S2

S3

S0

Paramétrage
On note e l’excentration du vilebrequin S1 et ℓb l’entraxe de la bielle S2, deux constantes
géométriques telles que

−−→
OB = e −→x1 et

−−→
BA = ℓb

−→x2. Il n’est pas nécessaire de paramétrer
la longueur du piston S3 puisqu’elle ne change rien au mouvement, tout comme le
carter S0. À chaque liaison pivot ou pivot glissant, on associe un angle :

— θ10 = (−→x ,−→x1) l’angle permettant de définir la position angulaire du vilebrequin
par rapport au carter ;

— θ21 = (−→x1,
−→x2) l’angle permettant de définir la position angulaire de la bielle par

rapport au vilebrequin ;
— θ32 = (−→x2,

−→x3) l’angle permettant de définir la position angulaire du piston par
rapport à la bielle ;

— θ30 = (−→y ,−→y3) = (−→z ,−→z3 ) l’angle permettant de définir la position angulaire du
piston par rapport au carter.

Enfin, on définit la translation autorisée par la liaison pivot glissant avec un paramètre
linéaire λ tel que la position instantanée du piston par rapport au carter soit

−−→
OA = λ −→x .

Le paramétrage de chacune des liaisons du mécanisme nécessite donc cinq paramètres :

θ10, θ21, θ32, θ30 et λ.

On trace ensuite immédiatement les figures géométrales associées à la définition de
chaque angle et qui serviront de support de calcul des produits scalaires et vectoriels.

−→z = −→z1

−→x

−→y

−→x1

−→y1

θ10.
−→z1 = −→z2

−→x1

−→y1

−→x2

−→y2

θ21.
−→z2 = −→z3

−→x2

−→y2

−→x3

−→y3

θ32.
−→x = −→x3

−→y

−→z

−→y3

−→z3

θ30.

Fermeture géométrique angulaire
Nous sommes ici dans cas particulier de rotations autour d’axes perpendiculaires pour
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lequel la fermeture géométrique angulaire peut s’écrire simplement. De plus, comme
aucune rotation ne se fait autour de l’axe −→y , la fermeture angulaire se limite à deux
équations scalaires suivant les axes −→x et −→z qui s’écrivent :

/−→x : −θ30 = 0

/−→z : θ32 + θ21 + θ10 = 0

À partir de la relation suivant −→x , on peut en déduire qu’il n’y aura pas de mouvement
de rotation du piston par rapport au carter (θ30 = 0). La seconde relation permet de
savoir que les trois angles θ10, θ21 et θ32 sont liés. En pratique, c’est l’angle θ21 qui
ne sera pas considéré comme un paramètre cinématique du problème et simplement
exprimé en fonction des deux autres angles s’il s’avère utile pour calculer une projection.

Fermeture géométrique linéaire
La relation de fermeture géométrique linéaire s’écrit :

−−→
OB +

−−→
BA +

−−→
AO = e −→x1 + ℓb

−→x2 − λ
−→x =

−→
0

Comme les positions relatives des points sont constantes selon l’axe −→z , seules les
projections suivant les axes −→x et −→y peuvent apporter des informations. Elles s’écrivent :

/−→x : e cos(θ10) + ℓb cos(θ32)− λ = 0

/−→y : e sin(θ10)− ℓb sin(θ32) = 0

De la deuxième expression on tire celle de cos(θ32) = ±
√

1− sin2(θ32) sous la forme :

sin(θ32) =
e

ℓb
sin(θ10) ⇐⇒ cos(θ32) = ±

√

1−
(
e

ℓb

)2

sin2(θ10)

où le signe de cos(θ32) reste indéterminé. Pour lever cette indétermination, il est
nécessaire de remarquer que λ doit être maximal lorsque θ10 est nul, ce qui implique
que le signe sera un plus. Il vient alors pour la première projection :

λ = e cos(θ10) +
√

(ℓb)2 − e2 sin2(θ10)

Cette expression ne relie que deux paramètres cinématiques λ et θ10, respectivement
associés au mouvement de translation du piston par rapport carter en entrée et au
mouvement de rotation du vilebrequin par rapport carter en sortie. C’est donc la loi
entrée–sortie du mécanisme recherchée.

* *
*
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