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Définition (Cinématique)

Le mot cinématique dérive du grec kinêma, kinêmatos qui signifie mouvement et
définit la partie de la mécanique qui étudie les mouvements indépendamment des
causes qui les provoquent.
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Objectifs

Prédire les mouvements des solides des ensembles mécaniques connaissant
ceux générés par les actionneurs ;

caractériser les liens entre les mouvements d’entrée et de sortie des
transmetteurs :

rapport de réduction des réducteurs (trains épicycloïdaux ou autres) ;
mécanismes de transformation de mouvement (bielle manivelle, croix de malte,
pompe à pistons axiaux et radiaux, etc.).
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Plan du cours

1 Introduction
2 Trajectoire, vitesse et accélération
3 Champ des vecteurs vitesses, torseur cinématique
4 Composition des mouvements
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Introduction
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Espace & temps

Cadre de travail : mécanique classique (non relativiste)

Nous avons vu que :

caractère indéformable des solides ⇒ conservation des angles et distances

modèle de solide indéformable = espace euclidien

cadre de la physique newtonienne :

temps indépendant de l’espace et des objets physiques

⇓
changement de repère ≃ changement de référentiel
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Trajectoire, vitesse et
accélération
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Trajectoire
d’un point d’un solide dans un référentiel

•
O0 −→y0

−→z0

−→x0

Définition (Trajectoire d’un point d’un solide)

La trajectoire d’un point M ∈ S par rapport à un référentiel R0 est le lieu des
positions successives (fixes dans R0) occupées par le point M dans le repère R0

au cours du temps ; soit :

C (M) = {M(t) | t ∈ R} ∈ R0

Les trajectoires sont orientées et suivent le sens du mouvement.
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Vitesse
d’un point d’un solide dans un référentiel

Définition (Vitesse d’un point d’un solide)

La vitesse à l’instant t d’un point M ∈ S dans son mouvement par rapport au
référentiel R0, d’origine O0, est égale à :

−−−−−→
VM,S/R0

= lim
∆t→0

(−−−−−−−−−→
O0M(t + ∆t) −

−−−−−→
O0M(t)

∆t

)

=
d
−−−→
O0M

dt
(t)

∣

∣

∣

∣

∣

R0

avec
−−−−−→
O0M(t) le vecteur position.

Notation des vecteurs vitesses
Comme le vecteur position, le vecteur vitesse dépend de l’instant choisi ;
cependant, afin d’alléger les notations, cette dépendance ne sera jamais
mentionnée explicitement.
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Vitesse
d’un point d’un solide dans un référentiel

•
O0 −→y0

−→z0

−→x0

−−−−−→
VM,S/R0

Représentation graphique : vecteur vitesse ⇒ flèche
origine confondue avec la position du point M à l’instant t ;
le support (direction) est tangent à la trajectoire du point M dans le
repère R0 ;
le sens est celui du mouvement ;
la norme est la valeur de la vitesse en m/s.
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Accélération
d’un point d’un solide dans un référentiel

Définition (Accélération d’un point d’un solide)

L’accélération à l’instant t d’un point M ∈ S dans son mouvement par rapport au
référentiel R0, d’origine O0, est égale à :

−−−−−→
ΓM,S/R0

=
d
−−−−−→
VM,S/R0

dt

∣

∣

∣

∣

∣

R0

=
d2

−−−→
O0M

dt2
(t)

∣

∣

∣

∣

∣

R0

avec
−−−−−→
O0M(t) le vecteur position.

Remarque sur le calcul de l’accélération
On calculera l’accélération d’un point d’un solide toujours à partir de la définition
⇒ en dérivant la vitesse du point dans le référentiel d’étude.
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Dérivation vectorielle
(Complément mathématique)

Soient V un espace vectoriel orienté de dimension 3 et B = (−→e1 , −→e2 , −→e3) une base
othornormée directe de V . Soit −→u : R → V une application de classe C1, appelée
fonction vectorielle. Les composantes de −→u dans B sont trois applications
(ui)1⩽i⩽3 de classe C1 de R dans R respectivement définies comme

∀i ∈ J1, 3K, ui(t) = −→u (t) · −→ei .

Définition (Dérivée d’une fonction vectorielle)

La dérivée de −→u à l’instant t dans la base B est le vecteur :

d−→u

dt
(t)

∣

∣

∣

∣

B

=
du1

dt
(t) −→e1 +

du2

dt
(t) −→e2 +

du3

dt
(t) −→e3

admettant comme composantes dans la base B les dérivées par rapport au temps
des composantes dans B.
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Dérivation vectorielle
(Complément mathématique)

Propriété

Soient −→u et −→v deux applications de classe C1 de R dans V , f et g deux
applications de classe C1 de R dans R et B une base othornormée directe de V ,
alors il vient :

d (−→u · −→v )

dt

∣

∣

∣

∣

B

=
d−→u

dt

∣

∣

∣

∣

B

· −→v + −→u ·
d−→v

dt

∣

∣

∣

∣

B

d (−→u ∧ −→v )

dt

∣

∣

∣

∣

B

=
d−→u

dt

∣

∣

∣

∣

B

∧ −→v + −→u ∧
d−→v

dt

∣

∣

∣

∣

B

d (f−→u + g−→v )

dt

∣

∣

∣

∣

B

=
df

dt
−→u + f

d−→u

dt

∣

∣

∣

∣

B

+
dg

dt
−→v + g

d−→v

dt

∣

∣

∣

∣

B

avec une notation « fonctions » supprimant les dépendances explicites en t.
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Dérivation vectorielle
(Complément mathématique)

Définition (Vecteur mobile)

On appelle vecteur mobile sur V une application non constante de classe C1 de R

dans V .

Proposition (Dérivée d’un vecteur mobile unitaire)

La dérivée par rapport au temps d’un vecteur mobile unitaire est orthogonale à ce

vecteur.

Définition (Base mobile)

On appelle base mobile sur V l’application B : t 7→ (−→e1(t), −→e2(t), −→e3(t)) qui
associe à chaque instant une base orthonormée directe constituée de trois vecteurs
mobiles unitaires.
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Dérivation vectorielle
(Complément mathématique)

Proposition (Taux de rotation)

Il existe un unique vecteur permettant de définir le taux de rotation d’une base

mobile orthonormée directe B(t) = (−→e1(t), −→e2(t), −→e3(t)) par rapport à une base

orthonormée directe B0, noté
−−−→
ΩB/B0

, tel que :

∀i ∈ J1, 3K,
d−→ei

dt
(t)

∣

∣

∣

∣

B0

=
−−−→
ΩB/B0

(t) ∧ −→ei (t)
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Dérivation vectorielle
(Complément mathématique)

Théorème (Dérivation vectorielle)

Les dérivées temporelles d’un vecteur −→v mobile dans deux bases différentes B0 et

B liées entre elles par le taux de rotation
−−−→
ΩB/B0

sont liées par la relation :

d−→v

dt

∣

∣

∣

∣

B0

=
d−→v

dt

∣

∣

∣

∣

B

+
−−−→
ΩB/B0

∧ −→v

souvent appelée « formule de Bour ».

Conséquences

La dérivée temporelle d’un vecteur unitaire −→u , de direction variable dans une
base B0 mais constant dans une base B, est orthogonale à ce vecteur.

Si la dérivée d’un vecteur lui est colinéaire, ce vecteur a une direction
constante dans la base de dérivation.
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Vitesse angulaire
d’un solide dans un référentiel

Définition (Vecteur vitesse angulaire)

Le vecteur vitesse angulaire ou de rotation (instantané) du solide S dans son
mouvement par rapport au repère R0 correspond au vecteur

−−−−→
ΩS/R0

=
−−−→
ΩB/B0

où
−−−→
ΩB/B0

est le taux de rotation qui caractérise les changements d’orientation de
la base B par rapport à la base B0 :

sa direction correspond à l’axe autour duquel la base B tourne par rapport à
la base B0 ;

son sens correspond à celui de la rotation (selon la règle de la main droite) ;

sa norme correspond à la vitesse angulaire en rad·s−1 à laquelle se fait cette
rotation.
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Vitesse angulaire
d’un solide dans un référentiel

Proposition (Taux de rotation plane)

Lorsque deux bases orthonormées directes ont un axe confondu, le vecteur taux

rotation est porté par l’axe commun et sa composante sur cet axe est la dérivée

de l’angle qui repère la rotation.

■ Exemple

Taux de rotation reliant deux bases orthonormées
directes B0 = (−→x0, −→y0, −→z0) et B = (−→x , −→y , −→z ), de
vecteur commun −→z0 = −→z (la normale au plan de
la figure) avec θ = (−→x0, −→x ) = (−→y0, −→y ) :

−−−→
ΩB/B0

= θ̇−→z −→x0

−→y0

−→x

−→y

θ

−→z0 = −→z
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Champ des vecteurs vitesses,
torseur cinématique
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Champ de vecteurs vitesses
d’un solide en mouvement dans un référentiel

Le mouvement d’un solide indéformable S par rapport à un référentiel R0 est
complètement déterminé par :

la vitesse de rotation
−−−−→
ΩS/R0

de la base associée au repère de S par rapport à celle de R0

la vitesse
−−−−−→
VM,S/R0

d’un point M ∈ S par rapport à R0

À partir des vecteurs
−−−−→
ΩS/R0

et
−−−−−→
VM,S/R0

,
on peut déterminer la vitesse en tout point du solide N ∈ S.

Théorème (Champ de vitesses)

Les vecteurs vitesses de deux points M et N d’un solide S en mouvement par

rapport à un référentiel R0 sont liés par la formule de changement de point :

−−−−−→
VN,S/R0

=
−−−−−→
VM,S/R0

+
−−−−→
ΩS/R0

∧
−−−→
MN
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Champ de vecteurs vitesses
d’un solide en mouvement dans un référentiel

Avec la formule de changement de point

−−−−−→
VN,S/R0

=
−−−−−→
VM,S/R0

+
−−−−→
ΩS/R0

∧
−−−→
MN

connaissant
−−−−→
ΩS/R0

et
−−−−−→
VM,S/R0

,
on peut déterminer la vitesse en tout point du solide N ∈ S.

L’ensemble des vecteurs vitesses d’un solide S en mouvement par rapport à R0

{−−−−−→
VP,S/R0

| P ∈ S
}

est appelé champ des vecteurs vitesses.
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Équiprojectivité du champ de vecteurs vitesses
d’un solide en mouvement dans un référentiel

Propriété fondamentale : équiprojectivité

Théorème (Équiprojectivité du champ de vitesses)

Le champ des vecteurs vitesses est équiprojectif,

c’est-à-dire qu’il vérifie la relation :

−−−−−→
VM,S/R0

·
−−−→
MN =

−−−−−→
VN,S/R0

·
−−−→
MN

Les champs vectoriels équiprojectifs (ou antisymétriques) sont appelés

TORSEURS
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Torseur cinématique
d’un solide en mouvement dans un référentiel

Définition (Torseur cinématique)

Le torseur cinématique du solide S par rapport au référentiel R0 traduit le champ
de vitesses (équiprojectif) du solide S dans le référentiel R0 et est noté :

{

VS/R0

}

=

M

{ −−−−→
ΩS/R0−−−−−→

VM,S/R0

}

=

N

{ −−−−→
ΩS/R0−−−−−→

VN,S/R0

}

Ce torseur est défini en tout point de l’espace et son expression en un point M
fait appel aux éléments de réduction du torseur que sont :

sa résultante
−−−−→
ΩS/R0

, qui est invariante (la même en tout point) ;

son moment
−−−−−→
VM,S/R0

, qui dépend du point de réduction, ici M .
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Torseur cinématique
d’un solide en mouvement dans un référentiel

Intérêt
Le mouvement d’un solide S dans un référentiel R0 sera complètement défini par
le torseur cinématique de S par rapport à R0, noté :

{

VS/R0

}

Réduction du torseur en un point

{

VS/R0

}

=

M

{ −−−−→
ΩS/R0−−−−−→

VM,S/R0

}

=

N

{ −−−−→
ΩS/R0−−−−−→

VN,S/R0

}

=

N

{ −−−−→
ΩS/R0−−−−−→

VM,S/R0
+

−−−−→
ΩS/R0

∧
−−−→
MN

}
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Torseur cinématique
d’un solide en mouvement dans un référentiel

Propriétés/Caractéristiques

Premier invariant du torseur : la résultante
−−−−→
ΩS/R0

Relation de changement de point :

−−−−−→
VN,S/R0

=
−−−−−→
VM,S/R0

+
−−−−→
ΩS/R0

∧
−−−→
MN

Équiprojectivité :

−−−−−→
VM,S/R0

·
−−−→
MN =

−−−−−→
VN,S/R0

·
−−−→
MN

Second invariant ou invariant scalaire du torseur : l’automoment ou le
produit scalaire des éléments de réduction en un point

−−−−−→
VM,S/R0

·
−−−−→
ΩS/R0

=
−−−−−→
VN,S/R0

·
−−−−→
ΩS/R0

Pour que deux torseurs soient égaux, il faut que les éléments de réduction en
un (même) point soient égaux.
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Torseurs cinématiques des liaisons usuelles (1/2)

Liaison
Schém.
spatiale

Schém. plane
Torseur

cinématique

Glissière
−→u

−→u

∀M

{ −→
0

V −→u

}

Pivot
A

−→u
A −→u

∀B ∈ (A, −→u ),

B

{

ω−→u
−→
0

}

Pivot
glissant

A

−→u
A −→u

∀B ∈ (A, −→u ),

B

{

ω−→u

V −→u

}

Hélicoïdale A

−→u
A −→u ∀B ∈ (A, −→u ),

B







ω−→u
p

2π
ω−→u







pas p à droite
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Torseurs cinématiques des liaisons usuelles (2/2)

Liaison
Schém.
spatiale

Schém. plane
Torseur

cinématique

Appui-plan

−→n −→n

A

{

ω−→n
−→
VA

}

avec
−→
VA · −→n = 0

Sphérique
C C

C

{ −→ω
−→
0

}

Cylindre-
plan

A
−→u2

−→n1

A

{

ω1
−→n1 + ω2

−→u2−→
VA

}

avec
−→
VA · −→n1 = 0

Sphère-
cylindre −→u

C
C −→u

C

{ −→ω
V −→u

}

Sphère-
plan

−→n C −→n C

C

{ −→ω
−→
VC

}

avec
−→
VC · −→n = 0
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Axe central d’un torseur cinématique
d’un solide en mouvement dans un référentiel

À chaque instant, tout torseur cinématique dont la résultante est non nulle
possède un axe central ∆.

Définition (Axe central)

L’axe central d’un torseur cinématique correspond à
l’ensemble des points A où la vitesse (moment du torseur)
est colinéaire au vecteur de rotation (résultante du torseur) :

−−−−−→
VA,S/R0

∧
−−−−→
ΩS/R0

=
−→
0

L’axe central est appelé axe instantané de rotation (ou de glissement).
Il n’existe que si la résultante est non nulle.
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Axe central d’un torseur cinématique
d’un solide en mouvement dans un référentiel

∆

•A0

•

M

−−−−→
ΩS/R0

−−−−−→
VM,S/R0

−−−−−−→
VA0,S/R0

Champ de vitesse orthoradiale (nul sur ∆)

Champ de vitesse axiale (constant)
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Axe central d’un torseur cinématique
d’un solide en mouvement dans un référentiel

Théorème

L’ensemble des points A de l’axe central d’un torseur cinématique du solide S par

rapport au repère R0 est défini à partir d’un point M quelconque par la relation :

−−−→
MA = λ

−−−−→
ΩS/R0

−

−−−−−−→
VM/S/R0

∧
−−−−→
ΩS/R0

−−−−→
ΩS/R0

·
−−−−→
ΩS/R0

avec λ ∈ R.
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Cas particulier du contact ponctuel

Deux solides S1 et S2 liés par une liaison sphère-plan sont en contact ponctuel.

S2

Π

P

S1
−→n

S2

Π

P

S1
−→n

×P1

×P2

On note :

P le point coïncidant au contact ;

Π le plan tangent commun (plan osculateur au contact).
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Cas particulier du contact ponctuel

Le torseur cinématique du mouvement
de S1/S2 en P s’écrit :

{

VS2/S1

}

=

P

{ −−→
Ω2/1

−−−→
VP,2/1

}

tel que :

−−−→
VP,2/1.−→n = 0

−−→
Ω2/1 =

−−→
Ωn

2/1
+

−−→
Ωt

2/1

S2

Π

P

S1−−→
Ωn

2/1

−−→
Ωt

2/1

−−→
Ω2/1

−−−→
VP,2/1

avec :
−−−→
VP,2/1 le vecteur vitesse de glissement de S2/S1, dans Π ;
−−→
Ωn

2/1
le vecteur rotation de pivotement, porté par −→n ;

−−→
Ωt

2/1
le vecteur rotation de roulement, porté par

−→
t .
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Cas particulier du contact ponctuel
Roulement sans glissement (RSG)

Si deux solides en contact roulent l’un par rapport à l’autre sans glisser on parlera
de roulement sans glissement (ni pivotement).

Exemple : roue qui roule sur la route sans glisser.

Les composantes du torseur cinématique de la liaison se simplifie alors :











−−−→
VP,2/1 =

−→
0

−−→
Ωn

2/1
=

−→
0

−−→
Ωt

2/1
̸=

−→
0

Utilisation : Calcul des vitesses de pièces des réducteurs à engrenages, des
contacts impliquant des éléments roulants (billes, rouleaux).
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Cas particulier du contact ponctuel
Exemple de roulement sans glissement (RSG)

S0

−→x

−→y

S1

S2

−→y

−→z

A

B

−→y1

−→z1

θ10

−→y2

−→z2

θ20

Relation entre ω10 = θ̇10 et ω20 = θ̇20 ?
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1 2 3 44

Composition des mouvements
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Composition des vecteurs rotations

Quand plusieurs solides sont en mouvement les uns par rapport aux autres, les
vecteurs rotations sont liés par le théorème suivant :

Théorème

La composition des vecteurs rotation s’écrit :

−−−−→
ΩR/R1

=
−−−−−−→
ΩR/Rn−1

+
−−−−−−−−→
ΩRn−1/Rn−2

+ · · · +
−−−−−→
ΩR2/R1
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Composition des vecteurs vitesses

Pour étudier le mouvement du point A ∈ R par rapport au référentiel R1, il est
toujours possible d’utiliser une composition de la forme :

−−−−−→
VA,R/R1

=
−−−−−→
VA,R/R2

+
−−−−−−−→
VA∈R2/R1

avec :
−−−−−→
VA,R/R1

vitesse absolue du point A dans le référentiel R1

−−−−−→
VA,R/R2

vitesse relative du point A dans le référentiel R2

−−−−−−−→
VA∈R2/R1

déf.
=

−−−−−−→
VA,R2/R1

vitesse d’entraînement du point A du solide S2

dans son mouvement par rapport au référentiel R1

« A ∈ R2 » signifie que l’on a « attaché le point A au solide S2 »
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Composition des vecteurs vitesses

Théorème

De manière générale, on pourra toujours écrire :

−−−−−→
VA,R/R1

=
−−−−−−−→
VA,R/Rn−1

+
−−−−−−−−−−→
VA∈Rn−1/Rn−2

+ · · · +
−−−−−−−→
VA∈R2/R1
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Composition des torseurs cinématiques

Les deux équations des théorèmes précédents on en déduit une loi de composition
générale.

Théorème

La loi de composition des mouvements de solides s’écrit dans le cas général :

{

VS/R1

}

=
{

VS/Rn

}

+
{

VRn/Rn−1

}

+ · · · +
{

VR2/R1

}
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Exemple : Moteur thermique d’aéromodélisme

−→x

−→y
−→x1

−→x2

ℓbe

λ

θ10

θ21

O

B

A

S1

S2

S3

S0

−→z = −→z1

−→x

−→y

−→x1

−→y1

θ10.
−→z1 = −→z2

−→x1

−→y1

−→x2

−→y2

θ21.
−→z2 = −→z3

−→x2

−→y2

−→x3

−→y3

θ32.
−→x = −→x3

−→y

−→z
−→y3

−→z3

θ30.
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Mouvements plans sur plan

•
O0

−→y0

−→z0

−→x0

Définition (Mouvement plan)

Un solide est en mouvement plan dans un référentiel si tous ses points se
déplacent dans des plans parallèles à un plan fixe de ce référentiel.
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Paramétrage d’un mouvement plan
d’un solide dans un référentiel

O0

−→z0
−→x0

−→y0

.

O

−→z

−→x

−→y

.

−→z0 = −→z

−→x0

−→y0

−→x

−→y

θ
.

µ

λ

−−−→
O0O

2 paramètres linéaires et 1 paramètre angulaire
tels que ∀S en mouvement dans R0 :

{

VS/R0

}

=

O

{ −−−−→
ΩS/R0

= θ̇ −→z0
−−−−−→
VO,S/R0

= λ̇(t) −→x0 + µ̇(t) −→y0

}

et vérifie :
−−−−−→
VO,S/R0

· −→z0 = 0
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