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— EXERCICE 1 —

Eolienne a pale endommagée

Question 1.1.

Z pivot d’axe £ pivot d’axe
(0,7) (0,7
— o
z
?1) Yo Z—2> 1
7 v
“ = "7
=7 Tl =13

Question 1.2. Par définition, avec la premiere figure géométrale de normale 2 et de

variation d’angle ¢, il vient :
— =
Q1/0 =az

De méme, avec I'autre figure géométrale, on trouve :
— .
_>
Qg/l = 01’1

Il vient alors par composition des taux de rotation :

Qo0 = Q2/1 + Q1/(/) = 07] + a7

Question 1.3. Par composition des mouvements, la trajectoire du point G5 d’'une pale 2

dans son mouvement par rapport au mat 0 dépend de deux contributions :

Te,n Comme {751} est une rotation d’axe (O, 1), la trajectoire du point Gy dans R,
est un cercle de centre B, de rayon ¢, dans le plan de normale T :

Teye1y0 Comme {770} est une rotation d’axe (O, z_f), le point G5 € S; décrit dans Rg un
cercle de centre H, le projeté orthogonal du point Go sur la droite (O, ?f), de rayon
HOG2 A z_l)H € [b, Vb2 + 02}, dans le plan de normale Zj.

La trajectoire du point G5 d’une péale par rapport au mat 0 évolue donc sur une surface

sphérique de centre O et de rayon v/b? + ¢2, limitée dans la direction = par deux plans
situés a ¢ du point O.

Question 1.4. Par définition, on a :

. 408

dz;
VB,l/o = F =

dt

Bo Bo



avec, par formule de dérivation vectorielle,

dz;

an| _
dt |,

—

B1

Bo

il vient finalement

—> .
VB,1/0 = baﬁ

Question 1.5. Par définition, on a :

—
7 _ dBG, dz;
CAHLT a7 A,
B 1
avec, par formule de dérivation vectorielle,
dz; dz — . .
—2| == —1‘92/1/\?5:951?2/\75:—9y_2>
dt |4 dt |4
1 2
il vient finalement
— .
V0272/1 = —c@y_g

Question 1.6. Considérant que le point G5 appartient au corpsl; c’est-a-dire considérant
la liaison pivot entre le corps 1 et la pale 2 bloquée avec €25/, = 0, il vient par définition :

——

.+ dOG, dz Az}

G2€1/0 = =0 — 0" C—
dt |, dt |, dt |,

avec, par formule de dérivation vectorielle,

dz; dz —
2 22 _I_QZ/O/\Z_2>ZQZ_1>/\?2>:Sin(0)dx_>1
dt By dt |,

il vient finalement

e A .
Vise1/0 = de(c sin(0) 71 + byt)

Question 1.7. Par définition, on a :

108

T oat
Bo

——
—

VB,1/0

dBG,
dt

— dOG,
Vas2/0 = &

Bo BO

avec, par formule de dérivation vectorielle,

— —
dt dt 1o 2
Bo B
—_——
s
Vay,2/1
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et —  —

QN BGy = Azl Aczy = csin(@)é:v_l>

On reconnait

> ’ L —
VB,l/O + Ql/() A\ BG2 = (CSlH(@)I—1> + bﬁ) = VGgEl/O

d’ou, finalement

Vas2/0 = Vason + Vasei/o




— EXERCICE 2 —

Régulateur de Watt

Question 2.1.

Z pivot d’axe Z pivot d’axe Z pivot d’axe
(0,7) (A=) (B,7)

Z pivot glissan 7 pivot d’axe

d’axe (0, 7) (C,2)

E4
Z—1> y—2> Y1
vl 75
o

— 4 = _ = ’ T

? = T 21 = 29

Question 2.2. Sachant que la liaison entre 0 et 1 est une pivot d’axe (O, ?), on a

ar
VM € (0,7), {#ip}= { - }

d’ou, par relation de changement de point :

Vo= Voo +Qi0 A OA
——

[
= &7 ARy,
= Ra7;

Question 2.3. Sachant que la liaison entre 1 et 2 est une liaison pivot d’axe (A, z_f), on a

H—>
VM e (AT, (Han) = {63}
o 0

d’ou, par relation de changement de point :

VB,z/i = Vaon +Qz/1 NAB
——

U]

A 0TS

B
%

sl

2



Question 2.4. Par composition des vitesses au point B, on a :

VB,Q/(I) = VB,Z/i + VBel/(/)

avec, par relation de changement de point :

VBeijo = VA,I/(/) + Q0 NAB
= R4z + a7 A7)
=& (R+ (sin(B)) 71

d’ou, par somme :

V2o = & (R+ (sin(8)) 2 + (673

Question 2.5. Commencons par exprimer les éléments de réduction canoniques de la
liaison pivot d’axe (B, 7{) entre 2 et 3, notamment le taux de rotation {23/,.
Dans le plan de normale z_f, on a :

Par dérivation, il vient alors :

tel que .
—2521
VM € (B,Z_1>), {%3/2}: { — }
M 0

d’ou, par relation de changement de point :

VC,3/§ = VB,g/é +Q3/9 A BC"
——

[

= —287 AT}
= 2035}

Question 2.6. Par composition des vitesses au point C', on a :

Voo = Voase + Voers + Voeryo

avec, par relation de changement de point :

Voeo1 = VB72/1 + Qo1 A BC”
= (35 + B A (T
— 06 (93 + v5)



— —
et, comme C' € (A, 91/0), c’est-a-dire tel que €90 A AC = 6), alors

\ \

Veero = VA,1/6

Par somme, il vient :

Voso = aRZL + 6 (Y5 — 75) <= |Voso = @Rz — 20sin(B)37

Question 2.7. Pour vérifier le cahier des charges, il suffit de prendre la situation extréme
avec § = 7/2 [27] constant. Dans ce cas, il vient :

[Vazro] = 161 (B +0)

Avec une vitesse de rotation de || = 200 tr/ min ~ 20rad-s~!, R = 20 mm et £ = 80 mm,
il vient : B
HVB,z/OH A 2M-S T = Unax

Donc le cahier des charges est vérifié.



— EXERCICE 3 —

Pompe hydraulique a pistons radiaux

Question 3.1. La liaison entre l'excentrique 1 et le piston 2 est une sphere-plan de
normale (BC) = (C,z). Les éléments de réduction canoniques du torseur cinématique

sont :

Qo1 —
{7/2/1} = { - avec VC,2/1 : 3?0 =0
o Ve

Le plan tangent au contact est le plan passant par C' de normale 7. La vitesse du point

de contact Vo1 étant dans ce plan, c’est une vitesse de glissement.
Question 3.2. Sachant, par théoreme d’équiprojectivité du champ de vitesses {#5/1} le
long de (BC) que

—> %

s
VBon 2o = Ve - 0 =0

et que, {#5)0} étant une translation de direction 70 telle que
- .
VM, Vi = XTg

alors, par composition des vitesses au point B dans la direction x_>0, il vient :

s,y =
VB2 2o = Vpan 2o +VBi0- o
e 0

Par relation de changement de point et linéarité du produit scalaire, on a :

— — —  —
V10 - ) = Voo T6 + (Ql/o NOB ) L T0

- (0% newt) -7

= —esin(6)0

d’ou finalement :

X = —esin(h)0

qui correspond ici a la dérivée de la loi entrée-sortie géométrique X = R + e cos(f).

Question 3.3. Le débit instantané correspond au flux sortant. Il faut donc distinguer
I’admission en fluide & comprimer du refoulement de celui qui vient d’étre comprimé.

Q: = max (0:5 X (1)) = 2 (X +[X]) = = (sin(0) +[simn(®)]) |

ou pour ne garder que l'alternance positive de la translation, nous avons fait sa moyenne
avec sa valeur absolue.



Question 3.4. Le débit moyen par piston est défini par :
_ 2 GS T 2T
Qi = / Dl (sin(f) + |sin(6)|) df = eSw (/ sin(6) do +/ 0 d@) = 2eSw
0 0 s

conduisant, par somme, au débit moyen avec 3 pistons

Q = 6eS ‘0‘

Avec 6 =1 000 tr/ min ~ 100rad-s™!, e = 10mm et D = 5mm, il vient :

_ 5x107%)2 75
O = 6% 100 x 10 x 10-% x ™ X4 F _ 27Tmm3-s_1 ~ 7,5L/ min € [0,5;20 L/ min]

avec I'approximation 67/2 ~ 10. Le résultat valide le cahier des charges.
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— EXERCICE 4 —

Transmission homocinétique par joint de Oldham

Question 4.1.

& pivot d’axe (A4, 2) & glissiere de direction 7,

& pivot d’axe (B, z4) & glissitre de direction z,

Les pieces 6a, 6b et 6¢c étant en liaisons glissieres, il est clair que les bases associées
B,, By et B, sont confondues et que 'on a # = « tel que :

%
= 0
a
_>
Ya
' %
7 =T,

Question 4.2. Par définition, on a :

— liaison pivot d’axe (A,7g) entre 3 ct 6a :

0

=
_ x

VM € (A, 26), {Yoasst = { — }
y L0

3
|

) o
VM € (B,z0), {Yes3} = —
v 0

— liaison glissiere de direction @i entre 6a et 6b :

=l

|

VM7 {7/61)/6(1} - {
M

()

<

— liaison glissiere de direction Z. entre 6b et 6c :

ol

&

w

VMu {7/60/612} - {
M

— liaison pivot d’axe (B, z4) entre 3 et 6¢ :

11



Question 4.3. Par composition des taux de rotation, il vient immédiatement :

Qgey3 = QGC/G;) + Qﬁb/&; + QGa/é — axy = 01) —

Question 4.4. Comme les vitesses de rotation d’entrée et de sortie du joint de Oldham
sont égales, alors le joint de Oldham est homocinétique.

Question 4.5. Pour déterminer une expression de la vitesse de translation V, gq/6, = —vﬁ
en fonction de 6 et 6 associé & la liaison pivot entre 3 et 6a, il suffit de composer les
vitesses au point B appartenant a ’axe de la liaison pivot entre 6c¢ et 3 (tel qu’il n’y ait
pas de &) et de projeter dans la direction % de fagon a ne pas faire intervenir la vitesse
entre 6b et 6¢; soit :

- s s s
VB.6c/3 E; = VB6e/6b - @Z + VBeb/6a - ﬁ +VB6as3 - E;
= 0
0 v

Par relation de changement de point, on a :

VB,6a/i/’> = VA,6a/:; + Q6ay3 N AB
= 06 A (fy6 — exh)

= [0
d’ot : :

v = —fsin(6)0
Question 4.6. De la méme fagon, pour déterminer une expression de la vitesse de
translation Vj g,/6. = — w3z, en fonction de a et & associé a la liaison pivot entre 3 et 6c¢,

il suffit de composer les vitesses au point A appartenant a 'axe de la liaison pivot entre
6a et 3 (tel qu'il n’y ait pas de ) et de projeter dans la direction Zo de fagon a ne pas
faire intervenir la vitesse entre 6a et 6b; soit :

= - e e T G
VA,6C/3 2 VA,6C/6b * Zg T VB,Gb/Ga * Zg VA,ﬁa/?) ‘Za
———r

w 0 6>

Par relation de changement de point, on a :

VA,GC/;) = VB,GC/é + Q6c/3 N BA
= 4T A (eTh — f30)
= —faz

d’ou, avec &« =0 :

w = —f cos(0)0

Question 4.7. Des deux questions précédentes, on voit que si f # 0 alors 6b est en
translation par rapport a 6a et 6¢c aux vitesses

{v — —fsin(h)f

w = —f cos(0)

12



qui, a vitesse de rotation # constante, ont une valeur moyenne nulle sur un tour. Ce sont
les deux rainures de 1’élément intermédiaire 6b qui permettent de guider ces translations.
On notera que par composition des champs de translation, on a :

\

Vi6e/6a = *,60/61/) + V*,Gb/&; = —fé (sin(@)ﬁ + 008(6)2_3) = —f@'Z_o>

qui signifie que, a vitesse de rotation constante avec f # 0, 6¢ est en translation perpétuelle
dans la direction de ’entraxe z—o> a la vitesse de norme

—_
VV*,GC/Ga

:‘f9‘>0

13



— EXERCICE b —

Attraction Magic Arms

Question 5.1.

Z pivot d’axe £ pivot d’axe Z pivot d’axe
(017 ’Z_g) (027 Z_O>> (027 @))
— — —
x
m Yo y—2> Y1 375 2
i 3 z
@1090_0) 921I_>1 9322_2>
Z-= Z-= -7

Les expressions canoniques de torseurs cinématiques sont :

— liaison pivot d’axe (Oq, ?8) :

R o7
VM € (O, 21), {7/1/0} = 6>
M

— liaison pivot d’axe (Os, 77) :

— 0‘21?(;
\V/ME<OQ7Z1>7 {%/1}: 6}
M

— liaison pivot d’axe (Oy, 73) :

— 932y—2>
VM € (0, 93), {"73/2} = o
M

Question 5.2. Par composition des vitesses au point P, on a :

VP,3/(,) = Vpgj2 + Vpo/1 + VP,I/(/)

14



avec, par changement de point :

VP,S/; = Vo2,3/; + Qg/; A O2P>
= 03275 A — (Lals + (375)
= —03037}
VP,Q/; = VO2,2/i + Q2/1 A 02P>
= 00121 A — (Y3 + 0373)
= é21 (525}2 — U3 sin(93g)y_2>)
VP,I/(\) = VOl,l/é + Q1/(/) A O1P>
=010z A — (L1 + 6ys + (3Z5)
= 1o (51?1 + by — L Sin<932)y_2>)

Par somme, il vient alors :

V3 = 0100177 + (910 + 921) [52-?2 — {3 Sln(esz)y_g] — O320375

Question 5.3. A partir de la figure 3, il vient :

— Tallure de 6y montre 2 segments :

1. Vt€[0,9] :
. 0,84 . 0,84 t 0,84 0,84¢?
o = = = buo(t) = -t = Buoft) = 10(0) + [ - do =
9 9 o 9 18
2. Vt€19,27] :

. t 9
910 = 0,84 — Qlo(t) = 910(9) + / 0,84 dz = 0,84 X (t — 2>
9

— Dallure de 69 montre 3 segments :

1. Vt €10,9] : .
021 =0 = 921(75) =0
2. Vt€19,17] :
" 0,94 : 0,94
921 = 17_9 — Hgl(t) = 3 (t — 9)
d’ou )
t 0,94 0,94 (t—9
9 8 16
3. Vit e [17,27] :

. t 26
021 = 0,94 - 921(75) = 921(17) +/ 0,94 dz = 0,94 X (t — 2)
17

— Dallure de 35 montre 1 segment :

15




1. Vt €10,27] :
. t
fyp — —0,628 —> Os(t) = 03(0) + / 0,628 do = —0,628¢
0
Question 5.4. Pour t = 19,8 s, on a :

9
010(19,8) = 0,84 x <19,8 - 2) ~ 12,85 = 0,28 [27]

26
0,1(19,8) = 0,94 x <19,8 - 2) ~ 6,39 = 0,10 [2n]

032(19,8) = —0,628 x 19,8 ~ —12,43 = 0,13 [2n]

Ces résultats sont cohérents avec les valeurs lues sur la figure 4.

Question 5.5. Par définition, on a :

Voo = y/ Vot - Vot

Avec les produits scalaires

x_>1~x_2>:cos(921) g;_g.y_g:() @.?3:0
9U_1> : y_2> = —sin(6y) x_2> . 17)3 = cos(f32)
T - T4 = cos(f32) cos(bs1)

il vient :

H‘T?,/())HQ = (91061)2 + (910 + 921)2 [53 + (3 sin(032))2} + (932£3>2
—+ 2£1910 [(910 + 921) [gg COS(QQl) + €3 Sin(egg) sin(Ggl)] — éggfg COS(¢932) COS(QQl)}
— 2f2£3 <910 + 921) 932 COS(932)

N

A Tinstant t = 19,8 s, avec le code python suivant

import math as ma
11=3.90;12=2.87;13-=2.61
theta 10 .28 ; theta_10p = .84
theta 21 .10 ; theta_21p = .94
theta_32 = .13 ; theta_32p = -.628
VP30 = ma.sqrt(
(1_1xtheta_10p)**2
+ (theta_10p+theta_21p)**2*(1_2*%*2+(1_3+*ma.sin(theta_32))**2)
+ (1_3*theta_32p)**2
+ 2%1_1xtheta_10p*(
(theta_10p+theta_21p)*(1_2*ma.cos(theta_21)
+ 1 _3#ma.sin(theta_32)*ma.sin(theta_21))

16



- theta_32p*1_3#*ma.cos(theta_32)*ma.cos(theta_21)

)
- 2x1_2x1 3%(theta_10p+theta_21p)*theta_32p*ma.cos(theta_32)

)

on trouve

[Vewo| ~ 10,03 m-s!

qui correspond bien a ce qui est observé sur le graphe de la figure 5. Cette vitesse est
maximale car a cet instant les trois vitesses de rotation ont valeur absolue maximale.

Question 5.6. Sur la figure 3, on observe sur I'intervalle de temps [17:27] s que les valeurs
de vitesses 0;/;_1, i € [1,3], sont constantes d’otl, par dérivation :

Vi € [[1,3]], éi/i—l =0

Question 5.7. par définition, on a :

—
4V . dz . : dz}
FP,?,/() — (1;53/0 (t) = 91051 ditl . -+ (910 -+ 921) lgg Tj .

Bo 0 0

. ' dw
—fg (COS(&‘;Q)Hggy—Q> + Sm((932) %

. d7s
)] — Ogply —>
Bo

dt |,

ol nous avons exploité le fait que les accélérations angulaires sont nulles dans l'intervalle
de temps [17;27] s. Avec les dérivées de vecteurs de base

4 a7 — ' :
any _4n —|—Ql/0/\?129102’_()>/\$_>1:810?71>
dt B dt B
0 1
dz3 dz3 s - ; ; '
d72 - 2 —1—92/0/\?2:(621—1-910)2_8/\%—%:(921+910)y—2>
t Bo dt By
dy2 :ﬂ _|_Q2/0/\x_>2:(921—1-910)?0)/\_2):—(921-1-910)1_)2
dt |z di g,
dz3 dz3 e - ; ; j j )
A R Qz/0 A 375 = {(921 + 910) Z_o> + 932@%} A 37—>3 = (921 + 010) COS(G?’Z)@ B 6322—??
dt B, dt Bs
il vient

Lpsjpo = 9%051?/_1> + (910 + 921) (ly + l35in(fs3)) y_2> — 203037 (921 + 910) 008(932)?/_5 + 932632

Question 5.8. Avec la courbe de la figure 6, on trouve dans 'intervalle de temps [17;27] s
que l'accélération est maximale a l'instant

Question 5.9. En ¢t = 19,8s, on releve les éléments demandés dans le diagramme
d’exigences :

17



— vitesse absolue > 30 km-h™' : validé, car la valeur max est de 36 km-h™' (10m-s!);

— accélération absolue de la nacelle > 1 g : validé, car la valeur max est de 18 m - s=2
ce qui est bien supérieur & 1 ¢ (9,8 m-s72);

— accélération absolue de la nacelle < 3 g : validé, car la valeur max est de 18 m - s72
ce qui est bien inférieur & 3 g (28 m - s72);

— jerk absolu de la nacelle < 20 m-s3 : vérifié car si on calcule la pente la plus grande
du tracé de l'accélération on la retrouve inférieure a la valeur max demandée.

18



— EXERCICE 6 —

Modélisation d’une encapsuleuse

Question 6.1.

"gpivot d’axe
(4, 73)

N

£ pivot glissant
d’axe (C, 3)

¢ o
. e
“ ) ’ o sphérid® &
centre
— —
- 7 — U = 22
21 Y2 Z3
— — —
n Z2 Ys
0 « 0
10 7 x_>1 32 y_2>
T =7 n=2 75 = 74

Les expressions canoniques de torseurs cinématiques sont :
— liaison pivot d’axe (O, @) :
910?
VM e (07 ?)7 {%)/0} = { —
M

— liaison pivot d’axe (A, 73) :

— liaison pivot glissant d’axe (C,3) :

— 6118/1752>
VM e (C,y3), {7/18/17} =
M

_>
V1g/17Y2

19



— liaison sphérique de centre C'

—

p3/18$—>2 + Q3/18§2> + 7“3/182_2>
{7/3/18} =
o 0

— liaison pivot glissant d’axe (D, 7)

VM e (D,?), {%/O} - { u3/0?

Question 6.2. Par composition des champs de vitesses, on a

spak = spsh + spn} = { papd ¥ (q3/18 + Q18/17) U5+ 13187 }
C

_>
V1g/17Y2

Comme le point C' appartient a la fois a I'axe central de {#is/17} (la droite (C, 7)) et

a l'axe central de {75,153} (la droite (C, fm})), alors C est un point de I'axe central
de {7517}. Par conséquent, il est possible d’identifier la liaison a partir des éléments de
réduction canoniques au point C.

On identifie alors comme liaison équivalente une liaison sphére-cylindre de centre C' et
d’axe (C, ﬁ) Elle possede 4 degrés de liberté et une mobilité interne : la rotation autour
de l'axe (C, y—g), paramétrée avec 2 inconnues.

Question 6.3.

Question 6.4. Par composition des vitesses au point O, on a :

\ \ \ AN \
7 7 7 7
Voars + Voo = Voiris + Vo3 +Vo,3/0
- e
0 Vo,17/3

Par relation de changement de point, il vient :

Vors = Vars + Qarys A AO

- 921?2 VAN —67
= Esin(a)émz—f

Vors = Vourys + Qirs A CO
= 017/3y_2> + (2917/37 + %7/37 + 7“17/3?) A (—90307 - 7”7)

= v17/3y_2> + 7"7’17/37 - 35307"17/37 + (1’30(117/3 - 7“]917/3) Z

VO,S/(,) = VD,3/0 + Qg/o A\ DO/
= Ug/g? +p3/0? A\ (—L? — 7’7)
= U3/07 - 7“293/07
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d’ou, avec
= 005(910)7 — sin(910)7
et
75 = cos(a)yi — sin(a) @ = cos(a) (cos(b10) Y + sin(b10) 7)) — sin(a) 2
il vient les projections dans la base (?, 7, ?) :

/? . 0 = —U17/3 sin(a) + TT’17/3 —+ U3/0

/7 . —/ SiIl(Oé) sin(010)921 = V17/3 COS(Oé> COS(910) — T30717/3

/7 : Usin(a) cos(019)021 = vi7/3 cos(a) sin(by0) + ({E30q17/3 — Tp17/3) + D30
Question 6.5. Tl n’est pas possible d’utiliser la composition des vitesses au point O pour
déterminer une expression de @39 = us3/9 en fonction de 6o car ce dernier n’apparait pas

car Vp 50 = 0. Pour obtenir une telle relation, il serait intéressant de se placer au point
C et de projeter la relation dans la direction 75 tel que l'on ait :

— I VA S =S T =
Vs - @3 Vs - @3 = Vs - 5+ Veg - T3 <= ugpcos(a) = Voo - 5
N —

0 0 ug /o cos(a)
car

— .
— comme (275 = lex_;, alors
-
\V/7, ((217/5 AN 7) : IL'—>2 — 0

s R
et donc pour ¥ = AC’, tel que Vearys - 75 =0:
—

- VC,17/3 = u17/3@> 1 $_>2;

— comme C € (D, ) alors on a

VC,3/6 = VD,3/0 = U3/07

d’ou
e
Voo - T5 = 30 cos(a)
II ne reste a calculer que la projection dans la direction x5 de Vi 5/0. Par relation de
changement de point, on a :

Veso = Voo + Q0 A OC

= 910? A (Zﬁgo? -+ 7’7)
= 7’9107
d’ou, avec
7 - 15 =sin(010) Y1 - 75 = sin(fy) sin(w) car Z L7

il vient finalement

u3/o cos(ar) = rsin(fg) sin(a)fyy <= uz/o = rsin(bo) tan ()b
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Question 6.6. La vitesse de rotation 61, maximale permettant de respecter le cahier des
charges est obtenue lorsque 619 = 7/2 [r], d’ou, supposant « €]0,7/2] :

. . VUmax
rtan(a) ‘910‘ S Umax < ‘910‘ S 7 tan ()
d’ou
Umax 0,12 ~ :

0 = = ~
’ 10 max rtan(a) 115 x 1073 tan(a)  tan(a)

22



— EXERCICE 7 —

Planeuse sous traction pour bandes d’acier inoxydable

7.1 Etude du différentiel

Avant de commencer I’étude cinématique, il est nécessaire de réaliser un graphe de
structure du différentiel :

2 b
SN ? “rec Sp/]éfe
¢ O wﬂ QSQ Bly,,

Z pivot d’axe “a ,

& pivot d’axe

Question 7.1. La condition de roulement sans glissement au point J s’écrit

>
Virvir = 0

Par composition des vitesses au point J, il vient

> R
Vv = Vv — Vi =0

Par changement de point, il vient :

Vv = Varv + Qv A AT

= WIV/17 A —m67
= _?BWIV/I7

VJH/; = VO,H/} + Qi NOJ
ma
= w11/17 A 7?
76011/17

Il vient alors dans la direction 7 :

o
/7 : Wrv/r = —ZWri/1

B

23



Question 7.2. De fagon similaire, la condition de roulement sans glissement au point K
s’écrit N
Vi, vy = 0

Par composition des vitesses au point K, il vient

\ \ \ %
Vv = Vv — Vi = 0

Par changement de point, il vient :

VK,IV/} = VB,IV/} + QIV/} N BK

-m
= WIV/17 A T’y7

= 7
9 wrv/i

Vi i1 = VC,HI/} + Qi NCK '
mo
= WHI/17 A 77
mo
= 7(«0111/[7

Il vient alors dans la direction 7 :

)
/? : wrvyr = —;MIH/I

Question 7.3. Comme toutes les liaisons pivot ont des axes paralléles, on a par composition
des taux de rotation, on a :

Vo € {11, 11T}, Qur= Qo — Qo = Weyr = wy — Wy

Ainsi, des résultats aux deux questions précédentes, on en déduit

«Q
wrv/i = _B (wn - wI) a S

) — g (wir —wr) = — (Wi — wy)
wrv/i = —; (OJIH - OJI) v

Apres regroupement des termes, il vient finalement :

J

wrr=(1=XNwr+ A\, avec A= %8 la raison basique du train
ay

Question 7.4. D’apres la table des correspondances pour le paramétrage, on trouve :

ws = (1 — X)) ws + Awg
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7.2 Mouvement principal et allongement

Question 7.5. La vitesse linéaire en sortie V est définie par

‘/s - sts
Sachant
wS
ke = — <= w, = ko
w1
il vient par substitution :
V; - ksstl

Question 7.6. Partant de
Wy = (1 —/\)w4+/\w6

avec
we = k1w , et wy = kows

par simples substitutions, il vient :
Wy = (1 — /\) k’gbdg + /\k‘lwl

Question 7.7. Sachant

WE
kE — wl W5 = ? ‘/e
ws — v = Wy = —n
Ve =Rewp W = ﬁe hpfe

e

par simple substitution, il vient :

‘/e = k}ERe [(1 — /\) k’QUJQ + /\]{31W1] ‘

Question 7.8. Avec les résultats précédents, on a :
V; — ‘/e = k‘sRSwl — kERe K]_ — /\) ]{72(,02 + /\k:lwl]

Sachant que 'on veut
Vs = Ve = awy

on en déduit que pour tout w; et we on doit avoir :

kR,
" kikgR,

a = k’ERek’Q ()\ - 1)

Question 7.9. Avec les nombres de dents @ = 38 dents, f = 26 dents, v = 23 dents,
0 = 35 dents, il vient la raison basique

08 35x26

oxy_38><23w

1,04
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1

Avec les parameétres de production V, = 60 m-min~! = 1m-s~! et 'expression V; = k,R,w;,

il vient

V. 1 x 155

=— = ~ 147,6rad-s™*
T LR, Tx0.15 orads
Avec la valeur d’allongement
Vi—Ve  aws
pu— pummy pumm 2

€ v 0 %

il vient
2V, 2V, 2 x 1 x 9100 x 93 57 6 rad-s-!
Wy = = = ~ rad-s
7 100a  100R.kgks (A—=1) 100 x 0,1 x 1311 x 28 x (1,04 — 1) ’
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— EXERCICE 8 —

Robot Rovio

Question 8.1. A chaque instant, on a
— — e
|72°) = B = & = =
Or les points I, J et K sont en contact avec le sol de normale 2 donc
L
€(I,7) = IA =Rz
o
€ (J,z) = JB =R7A
T
Ce(K,z) = KC =R7
ce qui signifie que les points A, B et C sont situés dans un plan paralléle au sol (défini

par les points I, J et K, de normale z_f) et distant de R du sol. Le mouvement du corps 1
par rapport au sol 0 se fait donc dans des plans paralleles de normales 1, tel que :

— —
Qo= w.zi et VM, Vo =0

{7/ }_ sz_1>
Y veE v

Question 8.2. En chaque point de contact, on a roulement sans glissement, ce qui se
traduit au point I par

—
Vitp=10
d’ou
Q10
{%1/0} = —
s 0

Choisissant simplement la base (95_10) , y_lg , z_f) pour exprimer les trois composantes du taux
de rotation, il vient :

wixfl_g + wiyy_A> + wizz_1>
{7/11/0} = —
s 0

Question 8.3.
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& pivot d’axe
(P.y10)

pivot d’axe

t d £ pivot d’axe % sphére-plan
(Ba xQO)

(@, ZE) avec RSG en J

& pivot d’axe
(R, J30)

Les expressions canoniques de torseurs cinématiques sont :

— liaison pivot d’axe (A, z1) :

— wlofl_g
VM € (A, 1), {7/10/1} = 6>
M

— liaison pivot d’axe (P,y15) :

— wuﬁ
VM € (P,y10), {7/11/10} = 6)
M

— liaison spheére-plan avec roulement sans glissement en [ :

—
{7/11/0} = { Q:/O }
I

0

Question 8.4. Par composition des vitesses au point Oy, il vient :

Vor1/0 = Vou1/10 + Voraoy11 + Vo 1170

avec
— —
Vo0 = V.7l + Vi, et Voiajio= 0 car O; € (A, 710)
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et, par relations de changement de point :

V01710/11 = VP,10/11 + 910/11 A POy
= —W11/1oy_>10 A (b2—>10 — aac_fg)
= —Wwi1/10 (5371_6 + az—lg)
V01,11/6 = V7110 + Qu/{) ANIO;
= (WiaT16 + wiyJA + wiz21) A (RZ — aln)
— — (Rwiz + aw;,) U4 + wiy (RT1) — azy)

ol nous avons exploité les figures géométrales

— — —
y—1> Yo y—A> (1 2'_16 ZA
z A U1
(0% ﬁ(ﬁxe) 610
X=2 T H=z4 o1 TA=T1 YA
Avec les projections
T = cos(ﬁ)f?o — s.in(ﬂ)y_A>
ui = cos(B)yA + sin(B) 716
o = (:08(910)2_1> — sm(@lo)y_A>
il vient :
/51_5 : %COSB"‘%SiHB: —bw11/10+Rwiy
/y_>A : —Vysinf 4V, cos f = —Rwi, +a (cos(ng)wll/lo — wiz)
/7 0=—a (wiy + COS(910)w11/10)

Question 8.5. Dans le systeme d’équations précédent, il n’apparait pas de wig car
O, € (A, 710). Pour faire apparaitre cette vitesse de rotation, il est possible d’utiliser une
composition des taux de rotation ou une composition de vitesses en un point M tel que

AM AT #0 — M¢ (AT

par exemple au point [ :

Viip = VI,I/l(/) + ‘/1,10/11 + Viii/0
H—c_/
0
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avec, par relations de changement de point :

\

V1,1/6 = Vo170 + Q10 ANOLT

= V71 + VUi +w. 7 A (aZy; — RZ)
= VoTl + VUi + aw. A

S —
Viiio = Vaio + Qijo A Al

= —wioZ1h A —RZ]

—Rwloﬁ

\

7
Vi10/11

y =
= Vpio/11 + Qiojun A PI

= —w11/10%> A (bz1o — Rz

Avec les projections déja calculées, il vient :

—(J.Jn/l() (R COS(@lo) — b) 51_6

[ ¢
JUA -

/7 0=0

Vi cos B+ Vysin B = wiy /10 (R cos(619) — b)
—Vpsin 84V, cos B + aw, = —Rwig

On obtient alors :

Vysin(B) — V, cos(f) — aw,

w10 =

R

Wii/10 =

Vycos B+ V,sin 8

Rcos(b10) — b

Question 8.6. Avec (19 = —[9 = 60° et B39 = 180°, il vient :

w10 = Vg

a Vy a
W30 = 5 — Wz 5

R R

Question 8.7. Pour une rotation a la vitesse w,, sans translation, c’est-a-dire avec
Ve =V, =0, 1l vient :

W10 = W = W3p = —W,; —

a

R

Question 8.8. On veut enfin vérifier le respect du critere de vitesse linéaire. Pour un
déplacement en ligne droite dans la direction Z1 A une vitesse Va,onpose w, =0et V, =0

tels que :

wip = —wg = Vy

V3

2R

30
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— EXERCICE 9 —

Etude d’un différentiel automobile

Question 9.1. Un différentiel est un mécanisme qui, sur un véhicule automobile, permet
aux roues motrices de tourner a des fréquences angulaires différentes ce qui est nécessaire
en virage ou la fréquence angulaire de la roue située a l'intérieur du virage est inférieure a
celle de la roue située a I'extérieur du virage. De plus, comme il est impossible d’avoir une
égalité parfaite des diametres des roues compte tenu de 1'usure et de la déformation des
pneumatiques, alors méme en ligne droite les vitesses de rotations doivent pourvoir étre
différentes.

9.1 Nécessité du différentiel en virage

Question 9.2. La condition de roulement sans glissement de la roue gauche sur le sol
s’écrit .
V2= 0

Par composition des vitesses au point Iy, on a :

\
[4

%
VI2,2/0 =V, 2/1 + V0= 0

Par relation de changement de point, on a :

V12,2/1 Vos, 2/1 + Q2/1 A Oqly
= wg/la:l A —r 7
= Tw2/1y1

‘/}2,1/0 = Vo,100 + Q1j0 A 02[2
—0Z A[(R—10/2) 7] —r7]
= (R—(/2) 0y

Il vient alors dans la direction y_f :

IR — /.
R 59
2r

/y_1>: Wo/1 = —

De facon similaire, en exp101tant la condition de roulement sans glissement de la roue
droite sur le sol Vi, 3,0 = O et sachant MI; = —MI, tel que, aprés avoir appliqué les
changements de variables :

VD, Ly — Dg, Wa/1 — Wa/1 et —f0— +/4

il vient dans la direction y_1> :

2R+ (.
/y_1>: W31 = — 5 0
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On a par quotient et sachant 2R > ¢ :

ws3/1 _ 2R+ ¢
O.)Q/l 2R — ¢

>1 < ’w3/1’ > ‘WQ/l’

En posant 6 > 0, il vient alors :
wg/1 < wg/1 < 0

ce qui signifie que la vitesse de rotation de la roue droite 3 par rapport a la voiture 1 doit
étre, en valeur absolue, plus grande que celle de la roue gauche 2 par rapport a 1.

9.2 Etude du mécanisme de répartition de vitesse

Question 9.3.

Y ot d'a%€

(E,T4)

Les expressions canoniques de torseurs cinématiques sont :

— les trois liaisons pivot d’axe (A4, 77) :
%
wWoix
VO €{2,3,4}, VM e (Am), {¥n}= { _ }
M

— liaison pivot d’axe (E,73) :

w54@1> }

— liaison sphere-plan avec roulement sans glissement en C' :

- )

0
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— liaison spheére-plan avec roulement sans glissement en D :

- %)

0

Question 9.4. Les conditions de roulement sans glissement aux points C' et D s’écrivent
respectivement

— — = —
VC75/2 =0 et VD75/3 =0

Par composition des vitesses aux points C' et D, il vient

Ves)

N Vv

, SN
=Vesa +Vean — Voo = 0

N > SN
Vpsiz=Vpsa+Vpan —Vpsn= 0

Sachant que

> \ > H
VD75/4 = —VC,5/4 car ED =—-EC

et que

> > — — = —
VO e {2,3,4}, Voo, =Vonn car AD Ax—{:(Ac +CD)Ax—>1:AC AT}

alors il n’est nécessaire que de calculer 2 vitesses. Par changement de point, il vient :

VC,S/zl = VEs/4 + 95/; NEC
= W5 i A —T71
= rw54?4>

VC,EI/{ = Vaon + Qg/i AN AC
= wm T A (a?l + Rﬁ)

= RwD1Z_4>

Il vient alors dans la direction z_4> :

w1 + Ws1

Wyl = 5
0 = —TWs4 + R ((,U41 — w31) R

qui signifie que wy; est la moyenne de ws; et w3y et que wsy n’est pas nulle que si w3y # woy,
c’est-a-dire qu’il est une image de la différence de vitesse de rotation de roues.

Question 9.5. En utilisant le porte satellite 4 comme référentiel, alors on a un train
d’engrenages simple tel que

|wsa| _ |waa| r
wsa|  wsal R
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Pour signer ces expressions, il est nécessaire de trouver ceux des vitesses aux points C' et
D. Soit
Wi >0 = wsu <0 = wy <0

r
Wsq = _EWM = —Wyy = |W34 = —W4

De plus, comme les liaisons pivot %51, £3/; et 3/, sont coaxiales (taux de rotation
colinéaires), il est possible de composer les taux de rotation dans la direction 77 tels que

d’ou

d’ou W31 — W41 = Wq1] — W1 < W41 = 5
W34 = W31 — W41

{W24 = W1 — W41 . Wa1 + Ws

ce qui correspond bien a ’expression reliant woq, w3y et wyy trouvée a la question précédente.

Question 9.6. Sachant de la question 9.2 que
2R— (. 2R+ 0,

CUQ/l = — , 0 et W3/1 = — o 0
il vient )
Wq1 = —R@
Wyq4 = 79 7é 0

Il est donc bien possible de moduler la Vitesse de rotation des roues en fonction de celle de
I’arbre moteur wy4; pour prendre un virage.

Question 9.7. Une roue patine si sa vitesse de rotation est grande par rapport a une
autre. En supposant que la roue droite patine, alors on a :

2wa
w_hmkw :>w_hm =
31 Hm Ry 2= AWM T
ce qui signifie que la roue gauche ne tourne plus et donc que la voiture ne peut plus
avancer, quelle que soit la vitesse de rotation du moteur.

Question 9.8. Avec un différentiel, lorsqu'une roue patine, il n’est plus possible de
transmettre de puissance motrice au sol.

Pour éviter ce probleme, il faudrait bloquer le différentiel en bloquant la liaison pivot
ZLs5)4; c'est ce qui équipe les véhicules 4 x 4 (voire le blocage de pont pour transmettre la
puissance de fagon inconditionnelle a 'avant et a l'arriere).
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— EXERCICE 10 —

Systeme d’aide a la navigation

10.1 Modélisation du comportement de la pompe

Question 10.1. La liaison .%o est une liaison pivot d’axe (O, 4) telle que :

N w1/0I_>0
VM € (0,73), {#ip} = -
M

Question 10.2. La liaison .25/, est une liaison pivot glissant d’axe (A, :?S) dont la vitesse
le long de I'axe est définie par

—>—>dm

Veen = Vo = 5| = \z7

X1

1
telle que

— w2/1$_>0
VM € (A, ), {#ap) = e
M Lo

Question 10.3. La liaison .5y est une liaison sphere-plan de normale (C, W)= (I,7

telle que
Viao -1 =0

d’ou 5
2/0 -
{”//2/0} = { } } avec  Viajo - =0
o U V2o
Question 10.4. Par théoreme d’équiprojectivité du champ de vitesses {”//2 /0} le long de
C1 , colinéaire a 17, il vient :
Viajo- T = Voo 1 =0
Question 10.5. Par composition des vitesses au point C', dans la direction ﬁ), il vient :
e I ey
Voo - W= Voo - W+ Ve o
0

Sachant C' € (A,70), on a : N
V072/1 = VA,Q/I - )\l_)O

et par relation de changement de point, on a :

Ve = Vo + Qi ANOC
= wl/o'?o) A ()\ZL_’S + Tﬁ)
= m11/02_1>

Avec les figures géométrales
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Z|
2 W !
n x_o)
f10 > B =
Ty =1, B
on trouve
T = cos(3)
2 -1 = (cos(b10) 2 — sin(b10)y4) - 7 = sin(B) sin(6y0)

Par somme, il vient finalement :

A = —rtan(B3) sin(f10)w1 0

qui correspond bien a la relation obtenue par dérivation de la loi entrée-sortie géométrique.

10.2 Calcul du débit instantané de la pompe

Question 10.6. Avec 6 pistons, on a :
. : ) s
Vi € [0, 5], \; = —rtan(p) sin (910 + 3> w10

et sachant que le débit instantané pour un piston s’écrit

) avec S:7T—d2

VZE[[O5]]QZ—S()\+ .

D’ou par somme, le débit instantané de la pompe :

rod? 5

Q=— 2 tan(5)wi o ; {sin (910 + Z;)T) +

)

Question 10.7. Sachant que sur une période on a :

2m ™
/ (sin(z) + [sin(x)|) dz = / sin(z) de = [—cos(z)]; = 2
0 0
alors il vient le débit moyen par piston

1 2 d?

Qi = %/0 Qi(010) db1o = a7 tan(B)wio

d’ou, par somme :

3
Q= - tan(B)wio
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— EXERCICE 11 —

Table élévatrice

Question 11.1. Par théoreme de Thales dans les triangles AOD et BOC, isoceles en O, on
a AD = CB . Le contact du galet 5 avec le sol 1 étant maintenu, ona AD =CB = u?,
w variable. Considérant que le contact est aussi maintenu entre le galet 6 et le plateau 2
alors on a que le plateau ne change pas d’orientation; d’ott on en déduit que

— -

Qy1 =0
Donc {7/2 /1} est une translation.

Sachant le triangle AOC isocele en O, on en déduit que le parallélogramme ADBC

est un rectangle car ses diagonales sont de méme longueur ; d’ou (AD ,AC ) =7/2 [27]

>
et donc que AC' = 2a sin(oz)7 est colinéaire a 7 Ainsi, sachant que par définition

—
— — dAC
Veonn = Vo = ——

= 2 )
P acos(a)ay

1

qui, sachant €25/; = 0, conduit a

[
VM, {7/2/1} - { 2a cos(a)ayf }

qui correspond bien a un champ de translation de direction 7

Question 11.2. Par composition des taux de rotation, on a :

Qﬁ/; = Qg3 + Q31 — Qz/i
——

O

— —
Avec Qﬁ/g = w637 et Qg/l = Oé?, il vient

—
Qﬁ/g = (w63 + CK) ?

Question 11.3. Par composition des vitesses au point B, on a :

VBon = VB,Q/é + VB3 + VB;&/i

— — . .
En posant Vp /1 = 07 et sachant Vg /3 = 0 et par relations de changement de point :

VB,2/(\)‘ = ‘/1,2/(/5 + Qa6 A —E}
= —(wgs+d)Z A—RY
= —R(wgs+a) 7

VB3 = VA,3/1 + Q3/1 AN AB
=a7Z A 2a:n_3>
= 20073

37



il vient :
/7 0= —R(wes + @) — 2acos(a)d

/Y v =2acos(a)d

Question 11.4. De la relation

2
VBan - 7 =0 <= R(wg—+ &) =—2acos(a)d <= |we = — (1 + ac;s(oz)) a

On en déduit par anti-symétrie
Ws4 = —We3

Question 11.5. Par composition des taux de rotation, il vient :

Qujz = Qs — Qa1
Sachant que dans le plan de normale Z,ona:
—
(7, 73) =7~ (7,73) 2rl=7—a2n] = Qun=—-a7

il vient alors par somme :

—
Qs = —247

—
Question 11.6. Sachant Vg3/7 L x_>7, on a par composition des vitesses au point F' dans

la direction 74 :

— Ly
Vias -7 = Vpass 27 + Vigyr - 27+ Vegz - 07
N—— —

< 0

— .
avec Vpg/r = )\?7 et, par changement de point

\

VF,4/;> = Vo + Q4/;/), ANOF
=247 Abz;
= —2bvys

et sachant (73,77) = 8 + o — 7 [27] tel que

ﬁ-:ﬁ:sm(ﬁ—i—a—ﬂ):—sin(ﬂ—i—a)

il vient finalement :

A = 2bsin(f + a)&

Question 11.7. En exploitant le résultat précédent et celui de la question 11.3, il vient :

a cos()

v bsin(ﬁ+a))\
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Question 11.8. Pour assurer une vitesse de translation supérieur a v, = 50mm-s—?, il
faut :

Y a cos() S0 e i S bsin(f +a)
~ bsin(B+a)” T ~ acos(a) ™
Sachant que le débit est défini par
wd?
Q="-"
4
on en déduit
0> rd*bsin(B+a)
~ 4 acos(a) ™

Avec d = 50mm, a = 0,6 m, b = 1,2m et dans la configuration critique, c¢’est-a-dire telle
que
sin(f + «)
cos(av)

= sin(f) + cos(p) tan(«)

soit maximale. Au voisinage de a« = 7/2 [27] on a = a, tel que

sin(8 + a) ~ 2sin(a) < 2
cos(a)
il vient :
2 —3)2 -3
05 ™, mL2X(B0X 0T XS0 X107 o) s
2a 2 x 0,6
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