
Corrections [P9] Filtrage linéaire

Exercice 1. Signal en dents de scie
1. Sur une période T = 2,5ms, le signal varie linéairement de 0 à Umax = 6,0V. Son

expression est donc u(t) = Umax × t/T sur l’intervalle [0, T ].
On calcule sa valeur moyenne :

Umoy =< u(t) >=
1

T

∫ T

0

u(t)dt =
Umax

T 2

∫ T

0

tdt =
Umax

T 2
× T 2

2
= Umax/2 = 3,0V

2. Valeur efficace :

Ueff =
√
< u2(t) > =

√
1

T

∫ T

0

u2(t)dt =

√
U2

max
T 3

∫ T

0

t2dt

=

√
U2

max
T 3

× T 3

3
=
√
U2

max/3 = Umax/
√
3 = 3,5V

Exercice 2. Filtre RL

1. En basse fréquence, la bobine est équivalente à un fil, donc us = 0.
En haute fréquence, la bobine est équivalente à un interrupteur ouvert. En sortie
ouverte, on a us = ue.
Le filtre élimine les basses fréquences en laissant passer les hautes fréquences : c’est
probablement un filtre passe-haut.

2. En utilisant la relation du diviseur de tension, H =
us

ue

=
jLω

R+ jLω
=

j(L/R)ω

1 + j(L/R)ω
.

En posant τ = L/R = 2ms le temps caractéristique du circuit, on obtient la fonction

de transfert sous forme canonique : H =
jωτ

1 + jωτ
.

3. L’amplification vaut H = |H| =
ωτ√

1 + (ωτ)2
. Elle est maximale pour ω → ∞ :

Hmax = 1. A la pulsation de coupure ωc elle est divisée par
√
2 : H(ωc) = Hmax/

√
2

soit ωcτ√
1 + (ωcτ)2

=
1√
2

. En prenant le carré il vient 1 + (ωcτ)
2 = 2(ωcτ)

2 si bien

que ωcτ = 1 soit ωc = 1/τ . La fréquence de coupure vaut fc = 1/(2πτ) = 80Hz.
4. Diagramme de Bode d’un passe-haut du premier ordre, le gain HF valant GdB = 0dB.
5. La composante sinusoïdale est de fréquence très élevée par rapport à la fréquence de

coupure (2 décades environ), donc elle va passer sans atténuation ni déphasage.
Pour la composante continue, ω = 0 donc H = 0 : elle est complètement éliminée.
En conclusion, us(t) = U0 cos(2πft).

Exercice 3. Étude d’un filtre
1. Le filtre ne laisse passer ni les basses ni les hautes fréquences : c’est probablement

un passe-bande.

R

e 0

BF

R

e 0

HF

2. H =
s

e
=

ZLC

ZLC +R
où ZLC est l’impédance du dipôle LC-parallèle :

ZLC =
ZL × ZC

ZL + ZC

=
L/C

jLω + 1/(jCω)
=

jLω

1− LCω2

Il vient H =
jLω

jLω +R(1− LCω2)
=

j(L/R)ω

1 + j(L/R)ω − LCω2
(passe-bande du

deuxième ordre).
3. Limite BF : HBF ∼ j(L/R)ω donc GdB,BF = 20 log((L/R)ω) (pente à 20 dB par

décade) et φBF = π/2.
Limite HF : HHF ∼ −j/(RCω) donc GdB,HF = −20 log(RCω) (pente à - 20 dB par
décade) et φHF = −π/2.

4. On mesure effectivement une asymptote de pente 20 dB/décade en BF de pente −20
dB/décade en HF.

5. L’intersection des asymptotes du gain en dB se fait à une pulsation telle que :
20 log((L/R)ω) = −20 log(RCω) soit 0 = 20 log((L/R)ω) + 20 log(RCω) =
20 log((L/R)ω × RCω) = 20 log(LCw2). Les coordonnées de cette intersection sont

donc ωi = 1/
√
LC et GdB,i = 20 log

(
1

R

√
L

C

)
.

Graphiquement on lit fi = 7kHz et GdB,i = −34 dB donc :
• ωi = 2πfi = 4,4× 104 rad · s−1 d’où

√
LC = 1/ωi = 2,3× 10−5 s.

• 1

R

√
L

C
= 10GdB,i/20 = 2,0× 10−2 d’où

√
L

C
= 2,0× 102 Ω.

On en déduit L =
√
LC ×

√
L

C
= 4,5mH et C =

√
LC ÷

√
L

C
= 0,12 µF .
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Corrections [P9] Filtrage linéaire

6. Ce quadripôle peut servir d’intégrateur en HF (fréquences très supérieures à la fré-
quence propre) car H ∼ 1/(jω) et de dérivateur en BF (fréquences très inférieures à
la fréquence propre) car H ∼ jω.
Cependant l’atténuation de ce filtre est très importante dans ces régimes, ce qui limite
son utilité.Il sert plutôt de filtre sélectif qui ne conserve que les fréquences proches
de 11 kHz.

Exercice 4. Sismomètre
1. On étudie le système {point matériel M de masse m} dans le référentiel du châssis,

muni du repère (A; e⃗x) avec e⃗x vertical descendant. Ce référentiel est galiléen en
l’absence de tremblement de terre, car A est immobile par rapport à O fixe dans le
référentiel terrestre galiléen.
À l’équilibre, les seules forces extérieures exercées sont le poids P⃗ = mg⃗ = mge⃗x et
la force de rappel du ressort F⃗ = −k(L−L0)e⃗x. D’après la deuxième loi de Newton,
P⃗ + F⃗ = ma⃗M = 0⃗ à l’équilibre.

En projetant sur e⃗x il vient Leq = L0 +
mg

k
.

2. Le mouvement de M dans le référentiel du châssis est décrit par le vecteur position−−→
AM = L(t)e⃗x. Les forces suivantes s’ajoutent :

— force de frottement fluide : f⃗ = −α
d
−−→
AM

dt
= −αL̇e⃗x ;

— force d’inertie d’entraînement due au caractère non-galiléen du référentiel : f⃗ie =

−m
d2OA

dt2
= −mẍe⃗x.

La deuxième loi de Newton s’écrit alors : P⃗ + F⃗ + f⃗ + f⃗ie = m
d2

−−→
AM

dt2
= mL̈e⃗x.

En projetant sur e⃗x il vient : mg − k(L− L0)− αL̇−mẍ = mL̈.
On pose z = L− Leq = L− L0 −

mg

k
alors mg − k(L− L0) = −kz, ż = L̇ et z̈ = L̈.

L’équation du mouvement se met alors sous la forme : z̈ + α

m
ż +

k

m
z = ẍ.

On identifie avec la formule proposée : ω0

Q
=

α

m
et ω2

0 =
k

m
d’où ω0 =

√
k

m
et

Q =
mω0

α
=

√
km

α
.

3. Avec les représentations complexes : −ω2z +
ω0

Q
jωz + ω2

0z = +ω2x. On en déduit la

fonction de transfert :

H =
z

x
=

ω2

ω2
0

1− ω2

ω2
0

+ j
ω

Qω0

— Dans le régime basse fréquence HBF =
ω2

ω2
0

→ 0 ;

— Dans le régime haute fréquence HHF = −1.
Il s’agit d’un filtre passe-haut d’ordre 2.

4. Pour le gain en décibel :

— en basse fréquence, GdB,BF = 20 log

(
ω2

ω2
0

)
= 40 log

(
ω

ω0

)
: asymptote de pente

40 dB par décade ;
— en haute fréquence, GdB,HF = 20 log(| − 1|) = 0 : asymptote horizontale.

Les asymptotes se croisent en ω = ω0.
Pour la phase :

— en basse fréquence, φBF = textarg

(
ω2

ω2
0

)
= 0 ;

— en haute fréquence, φHF = arg(−1) = ±π.

Pour une pulsation quelconque : φ = arg(H) = −arg
(
1− ω2

ω2
0

+ j
ω

Qω0

)
. Le com-

plexe dont on prend l’argument a une partie imaginaire positive, et se trouve donc
dans le cadran supérieur avec une phase comprise entre 0 et π. ϕ est son opposé est
donc comprise entre −π et 0. On en déduit que l’asymptote en haute fréquence se
trouve en −π.

5. On veut que le gain soit de 1 : on se place donc en haute fréquence (le déphasage qui
est une simple inversion). Il faut donc que ω0 ≪ ω.

6. Avec Q =
1√
2

le filtre est non-résonant et avec un gain quasi constant sur toute la

bande passante : le signal est reproduit fidèlement.

Le régime transitoire est pseudo-périodique, de durée caractéristique τ =
2Q

ω0
=

√
2

ω0

(voir cours du chapitre P3). C’est un facteur
√
2 du temps caractéristique pour le

régime critique qui est la plus rapide, c’est donc satisfaisant.
Cependant si ω0 ≪ ω = 2π/T , alors τ ≫ T (la période des secousses) ce qui empêche
de capter les premières secousses de façon fidèle. Ceci est dû à l’inertie du système
mécanique.
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Exercice 5. Radio AM

1. f0 ≫ f qui est de l’ordre du kHz (voix). Le signal est un signal sinusoïdal de fréquence
f0 (en bleu) dont l’amplitude (en rouge) oscille autour de sa valeur moyenne avec
une fréquence f .

t

sm

2. sm(t) = Pm(1 + αSm cos(2πft+φ)) cos(2πf0t). En utilisant une identité trigonomé-
trique :

e(t) = Pm cos(2πf0t) + αSmPm cos(2πft+ φ) cos(2πf0t)

= Pm cos(2πf0t) + αSmPm(cos(2π(f0 + f)t+ φ) + cos(2π(f0 − f)t− φ))/2

Le spectre contient donc un pic à la fréquence f0 d’amplitude Pm entouré de deux
pics aux fréquences f0 ± f d’amplitude αPmSm/2.

3. Les signaux émis ont un spectre de largeur 2fmax centrés sur la porteuse. Pour
qu’ils ne se chevauchent pas, ils faut que deux porteuses soient séparées d’au moins
2fmax = 18 kHz.

4. Pour sélectionner un signal, il faut un filtre passe-bande très sélectif, de fréquence
de résonance égale à la fréquence de la porteuse et de bande passante de l’ordre
de 2fmax. On choisit la station de radio en réglant la valeur de de la fréquence de
résonance.

5. u(t) = K[Pm cos(2πf0t)+(αSmPm/2) cos(2π(f0+f)t+φ)+(αSmPm/2) cos(2π(f0−

f)t− φ)] cos(2πf0t+Ψ). On développe :

u(t) = KPm cos(2πf0t) cos(2πf0t+Ψ)

+ (KαSmPm/2) cos(2π(f0 + f)t+ φ) cos(2πf0t+Ψ)

+ (KαSmPm/2) cos(2π(f0 − f)t+ φ) cos(2πf0t+Ψ)

= (KPm/2)(cos(4πf0t) + cos(Ψ))

+ (KαSmPm/4)(cos(2π(2f0 + f)t+ φ+Ψ) + cos(2πft+ φ−Ψ))

+ (KαSmPm/4)(cos(2π(2f0 − f)t− φ+Ψ) + cos(2πft+ φ+Ψ))

= (KPm/2) cos(Ψ) + (KkSmPm/2) cos(Ψ) cos(2πft) + (KPm/2) cos(4πf0t)

+ (KαSmPm/4)[cos(2π(2f0 + f)t+ φ+Ψ) + cos(2π(2f0 − f)t)− φ+Ψ)]

Le spectre contient une composante continue (amplitude (KPm/2) cos(Ψ)), un petit
pic à la fréquence f (amplitude KαSmPm/2) et un pic à la fréquence 2f0 (amplitude
KPm/2) entouré par deux petits pics aux fréquence 2f0±f (amplitude KαSmPm/4).

6. On veut récupérer le signal à fréquence f . Un filte passe-bande n’est pas adapté car
son gain dépend de la fréquence. On utilise plutôt deux filtres successifs.
Il faut tout d’abord éliminer les trois pics autour de la fréquence 2f0 qui est très
grande par rapport à f . Un filtre passe-bas de fréquence de coupure de l’ordre de
10 kHz convient.
Il faut ensuite éliminer la composante continue : pour ce faire on utilise un filtre
passe-haut avec une faible fréquence de coupure (environ 10 Hz pour ne pas affecter
les fréquence sonores).
Il restera alors s′(t) = (KαSmPm/2) cos(Ψ) cos(2πft) = (KαPm/2) cos(Ψ)s(t). On
retrouve le signal de départ, à un facteur constant près.

7. Le filtre passe-bas s’obtient avec un filtre RC par exemple (voir Ex C). La fréquence
de coupure est telle que fc = ωc/(2π) = 1/(2πRC). Il faut donc choisir RC ≃
1/(2πfc) = 1,6× 10−5 s. Par exemple : R = 80Ω et C = 200 nF (il faut R faible pour
limiter l’impédance de sortie).
Le filtre passe-haut s’obtient avec un filtre CR (on inverse la place de R et C). La fré-
quence de coupure est identique, il faut donc choisir R′C ′ ≃ 1/(2πf ′

c) = 1,6× 10−2 s.
Par exemple : R = 80 kΩ et C = 200 nF (il faut R grand pour augmenter l’impédance
d’entrée).
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Exercice 6. Filtres RC en cascade
1. Vu de l’amont, le dipôle est une association série d’un conducteur ohmique et d’un

condensateur, donc l’impédance d’entrée vaut Ze = R+
1

jCω
=

1 + jRCω

jCω
.

2. Pour déterminer l’impédance de sortie, on court-circuite les deux bornes d’entrée. Le
dipôle vu depuis l’aval est une association parallèle de R et C :

Zs =

R× 1

jCω

R+
1

jCω

=
R

1 + jRCω

3. Il faut |Ze| ≫ |Zs| soit
√
1 + (RCω)2

Cω
≫ R√

1 + (RCω)2
ou (1 + (RCω)2) ≫ RCω.

On obtient cette condition à basse fréquence (ωRC ≪ 1) et à haute fréquence
(ωRC ≫ 1).

4. u en fait aux bornes du dipôle constitué du condensateur central en parallèle avec
la branche de droite. L’impédance complexe équivalente à ce dipôle est Zu =

(R+ 1/(jCω))/jCω

R+ 1/(jCω) + 1/(jCω)
soit Zu =

1 + jRCω

(2 + jRCω)jCω
.

Ce dipôle est en série avec la première résistance donc on peut appliquer la relation
du diviseur de tension :
u

e
=

Zeq

R+ Zeq
=

1 + jRCω

1 + jRCω + jRCω(2 + jRCω)
soit u

e
=

1 + jRCω

1 + 3jRCω −RCω2
.

5. De plus on aussi s

u
=

ZC

ZC + ZR

=
1

1 + jRCω
.

Ainsi, H =
s

e
=

s

u
× u

e
=

1

1 + 3jRCω − (RCω)2
(filtre passe-bas du deuxième

ordre).
Remarque : ce filtre est non-résonant car Q = 1/3 < 1/

√
2.

6. H1 ×H2 =

(
1

1 + jRCω

)2

=
1

1 + 2jRCω − (RCω)2
.

Ce résultat diffère légèrement de H, à cause du terme central. Cependant ce terme
est négligeable par rapport aux autres dans les régimes basse et haute fréquence pour
lesquels l’impédance d’entrée du second est très supérieure à l’impédance de sortie
du premier.
Ceci valade la condition de mise en cascade des filtres.
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