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2.1 Familles génératrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Familles libres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Dimension d’un espace vectoriel 6
3.1 Espace de dimension finie . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Dimension d’un espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Dimension d’un sous espace . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Somme directe et dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Chapitre 12 : Espaces vectoriels et sous espaces.

Un espace vectoriel E sur un corps K (très souvent R ou C) ou K-espace vectoriel
est un ensemble non vide E muni : d’une addition + pour lequel E est un groupe d’élément
neutre 0 = 0E et d’un produit (noté parfois . mais souvent omis) des éléments de E par
ceux de K à valeurs dans E, associatif, distributif sur +.

On demande de plus que si v est un vecteur de E alors 1K.v = 1.v = v.

Les éléments de E, les vecteurs, d’un espace sont souvent notés avec des lettres ro-
maines et les éléments de K, les scalaires, sont notés avec des lettres grecques.

Les ensembles :

� {0}, R, R2, R3, ..., Rn pour n ∈ N ;

� l’ensemble RN des suites réelles ;
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� l’ensemble R[X] des polynômes réels ;

� l’ensemble R(X) des fractions rationnelles réelles ;

� Si X est un ensemble non vide, l’ensemble RX des applications réelles définies sur
X ;

� l’ensemble Mn,p(R) des matrices réelles de taille n× p ;

sont naturellement des espaces vectoriels réels.

Les ensembles :

� {0}, C, C2, C3, ..., Cn pour n ∈ N ;

� l’ensemble CN des suites complexes ;

� l’ensemble C[X] des polynômes complexes ;

� l’ensemble C(X) des fractions rationnelles complexes ;

� Si X est un ensemble non vide, l’ensemble CX des applications réelles définies sur
X ;

� l’ensemble Mn,p(C) des matrices complexes de taille n× p ;

sont naturellement des espaces vectoriels complexes et du coup réels.

Définition 1 Si E est un K-espace et F une partie de E, on dit que F est un sous espace
de E quand c’est une partie non vide stable par combinaison linéaire autrement dit si :

� Si (u ∈ F et v ∈ F ) alors u+ v ∈ F ,

� Si (λ ∈ K et u ∈ F ) alors λu ∈ F .

Si E est un espace vectoriel alors {0} et E sont 2 sous espaces de E.

Si v est un vecteur non nul de E, l’ensemble

K.v = {λ.v/λ ∈ K}

est un sous espace de E appelé droite vectorielle engendrée ou dirigée par v.

Dans R2 et R3, on a des sous espaces connus :

� Les droites vectorielles ou droites linéaires de R2.

� Les droites et plans vectoriels de R3.

Propriété 1 Si F et G sont 2 sous espaces d’un espace vectoriel E alors F ∩ G est un
sous espace de E. Plus généralement si (Fi)i∈I est une famille de sous espaces de E alors∩

i∈I Fi est un sous espace de E.
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(Attention avec la réunion !)

Définition 2 Si F1, . . . , Fn sont des sous espaces d’un espace E, alors, on définit leur
somme vectorielle : F1 + · · ·+ Fn = {v1 + · · ·+ vn/v1 ∈ F1, . . . , vn ∈ Fn}

La somme vectorielle F1 + · · · + Fn est un sous espace de E. C’est le plus petit sous
espace de E contenant à la fois F1, F2 ... et Fn.

On prendra garde au fait que la somme vectorielle n’a pas les propriétés classiques d’une
addition, par exemple : F + F = F .

On dit que la somme vectorielle F1+ · · ·+Fn est directe quand de manière équivalente :

� pour tout vecteur v de F1+ · · ·+Fn, l’écriture v = v1+ · · ·+vn avec v1 ∈ F1, . . . , vn ∈
Fn est unique,

� si 0 = v1 + · · ·+ vn avec v1 ∈ F1, . . . , vn ∈ Fn alors v1 = · · · = vn = 0.

Dans ce cas, on note :
F1 ⊕ · · · ⊕ Fn

La somme vectorielle de deux sous-espaces F + G est directe quand on a simplement
F ∩G = {0}.

Définition 3 Si F et G sont 2 sous espaces de E, on dit que F et G sont supplémentaires
dans E quand une des conditions équivalentes suivantes est réalisée :

� F ⊕G = E.

� F +G = E et F ∩G = {0}.
� Tout vecteur u de E s’écrit de manière unique : u = v + w avec v ∈ F , w ∈ G.

2 Familles génératrices, libres, bases

2.1 Familles génératrices

On se place dans un K-espace vectoriel E.

On considère v1, . . . , vn un ensemble fini de vecteurs de E et λ1, . . . , λn des scalaires. Le
vecteur :

v =
∑
i∈I

λi.vi = λ1v1 + . . . λnvn

est une combinaison linéaire des vecteurs v1, . . . , vn.

Plus généralement, on considère I un ensemble quelconque et F = (vi)i∈I une famille
indexée par I de vecteurs de E.
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Si (λi)i∈I est une famille de scalaires indexée par I, on dit que (λi)i∈I est à support
fini (ou presque nulle) quand l’ensemble des indices i ∈ I tel que λi est non nul est fini.
Dans ce cas, on note :

v =
∑
i∈I

λi.vi

la somme réduite à ces indices. C’est une combinaison linéaire des vecteurs de F .

On note : Vect(F ) = VectK(F ) l’ensemble des combinaisons linéaires (à coefficients dans
K) des vecteurs de F . On l’appelle espace engendré par F

Théorème 1 L’ensemble Vect(F ) est un sous espace vectoriel de E. C’est le plus petit
sous espace vectoriel de E contenant les vecteurs de F . Pour cette raison, on l’appelle
sous espace engendré par F .

On convient que la famille vide engendre l’espace {0} : Vect(∅) = {0}

Une droite vectorielle de E est donc le sous espace engendré par un vecteur non nul.

Un plan vectoriel est le sous espace engendré par 2 vecteurs non colinéaires.

Définition 4 Si F est une famille de E, on dit qu’elle est génératrice de E ou qu’elle
engendre E, ou encore que E est engendré par F quand :

E = Vect(F )

Finalement : une famille F = (ei)i∈I est génératrice de E si et seulement si, pour tout
v ∈ E il existe une famille à support fini (λi)i∈I tel que :

v =
∑
i∈I

λi.vi

2.2 Familles libres

Une famille finie (e1, . . . , en) est libre quand pour tout λ1, . . . λn dans K :

Si λ1ei1 + · · ·+ λnein = 0 alors λ1 = 0, . . . , λn = 0

Si u ̸= 0 alors la famille (u) est libre.

Une famille de deux vecteurs (u, v) est liée si et seulement si u et v sont colinéaires ou
proportionnels : il existe λ ou µ non nul dans K tel que :

u = λ.v ou v = µ.u

Plus généralement :
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Définition 5 Si F = (ei)i∈I est une famille de E, on dit qu’elle est libre quand, pour tout
famille (λi)i∈I à support fini dans K :

Si
∑
i∈I

λi.vi = 0 alors (∀i ∈ I) λi = 0

Une famille non libre est dite liée.

Propriété 2 Une famille est liée si et seulement si un de ses vecteurs est une combinaison
linéaire d’autres vecteurs de la famille.

Un critère pratique :

Propriété 3 Dans l’espace K[X] des polynômes à coefficients dans K, une famille de
polynômes à coefficients 2 à 2 distincts est libre.

2.3 Bases

Définition 6 On dit qu’une famille B = (ei)i∈I est une base de E quand elle est à la fois
libre et génératrice de E.

Si B = (e1, . . . , en) est une base finie, si v ∈ E, il existe une unique famille à de scalaires
(λ1, . . . , λn) tel que

v = λ1.e1 + · · ·+ λnen

On dit que les (λ1, . . . , λn) sont les coordonnées de v dans la base B.

Plus généralement, si B = (ei)i∈I et si v ∈ E, il existe une unique famille à support fini
de scalaires (λi)i∈I tel que

v =
∑
i∈I

λi.ei

On dit que les (λi)i∈I sont les coordonnées de v dans la base B.

Par définition, toute famille libre F est une base du sous espace vectoriel Vect(F ) de E.

Propriété 4 (Exemple fondamental) Dans l’espace Kn la famille :

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 . . . , en =


0
0
...
0
1


est une base de Kn appelée base canonique de Kn.
Un vecteur (λ1, . . . , λn) de Kn a pour coordonnées dans cette base (λ1, . . . , λn).
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Propriété 5 Dans l’espace Kn[X] la famille :

(1, X,X2, . . . , Xn)

est une base de Kn[X] appelée base canonique de Kn[X].
Un polynôme a0+a1X · · ·+anX

n de Kn[X] a pour coordonnées dans cette base (a0, a1, . . . , an).

Propriété 6 Dans l’espace K[X] la famille :

(Xn)n∈N = (1, X, . . . , Xn, . . . )

est une base de K[X] appelée base canonique de K[X].
Un polynôme

P =
∑
n∈N

anX
n = a0 + a1X + · · ·+ anX

n + . . .

(rappelons que c’est une somme finie) a pour coordonnées la famille (an)n∈N dans cette
base.

3 Dimension d’un espace vectoriel

3.1 Espace de dimension finie

On considère E un espace vectoriel.

Définition 7 On dit que l’espace E est de dimension finie quand il admet une famille
génératrice finie et on note dim(E) < ∞. On dit E est de dimension infinie dans le cas
contraire et on note alors dim(F ) = ∞.

Par exemple : dim(K[X]) = ∞.

A partir de maintenant, on suppose que E est de dimension finie. Dans cas, il admet des
bases. On a même le célèbre :

Théorème 2 (Théorème de la base extraite (Version 1)) De toute famille génératrice
finie de E, on peut extraire une base de E.

Si au contraire on dispose d’une famille libre :

Théorème 3 (Théorème de la base incomplète (Version 1)) Si F = (e1, . . . , ep) est
une famille libre d’un espace E de dimension finie alors on peut la compléter de sorte à
former une base de E.
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3.2 Dimension d’un espace

Propriété 7 Si E = Vect(v1, . . . , vn), toute famille de n+ 1 vecteurs de E est liée.

C’est une conséquence, admise ici de l’algorithme de Gauss sur l’étude des systèmes
linéaires.

On peut alors montrer le théorème central :

Théorème 4 Si E est de dimension finie alors toutes les bases de E ont le même nombre
d’éléments, nombre qui est appelé dimension de E et noté dim(E).

Exemple fondamental :
dim(Kn) = n

De même, dim(Kn[X]) = n+ 1.

On convient par ailleurs : dim({0}) = 0.

On a du coup le théorème suivant très pratique ... quand on connait la dimension d’un
espace.

Théorème 5 Si E est un espace de dimension n et si F est une famille de n vecteurs de
E alors F est une base de E si et seulement si elle est libre, si et seulement si elle est
génératrice.

Théorème 6 (Théorème de la base incomplète (version 2)) Si F = (e1, . . . , ep) est
une famille libre de E alors p ≤ dim(E) = n. La famille libre F est une base de E si et
seulement si p = n. Sinon, on peut compléter F en une base de E.

Théorème 7 (Théorème de la base extraite (version 2)) Si F = (e1, . . . , ep) est une
famille génératrice de E alors p ≥ dim(E) = n. C’est une base de E si et seulement si
p = n. Sinon, on peut extraire de F une base de E.

En particulier, toute famille libre de n vecteurs dans Kn est une base de Kn.

Toute famille de n + 1 polynômes de Kn[X] dont les degrés sont distincts 2 à 2 est une
base de Kn[X].

3.3 Dimension d’un sous espace

On considère un espace E vectoriel de dimension finie n.
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Théorème 8 Si E ′ est un sous espace vectoriel de E alors il est aussi de dimension finie
et dim(E ′) ≤ dim(E). De plus, il y a égalité entre E ′ et E si et seulement si dim(E) =
dim(E ′). Autrement dit : {

E ′ ⊂ E

dim(E ′) = dim(E)
=⇒ E ′ = E

Il suit que les sous espaces de R2 sont : {0}, les droites vectorielles et R2. Les sous espaces
de R3 sont : {0}, les droites vectorielles, les plans vectoriels et R3.

Définition 8 Si F = (e1, . . . , ep), on pose :

rg(F ) = dim(Vect(e1, . . . , ep))

rg(F ) est le rang de la famille F .

On obtient rapidement :

Propriété 8 Si F est une famille de E alors :

rg(F ) ≤ #(F ) rg(F ) ≤ dim(E)

De plus :

� rg(F ) = #(F ) si et seulement si la famille F est libre ;

� rg(F ) = dim(E) si et seulement si F est une famille génératrice de E.

� rg(F ) = #(F ) = dim(E) si et seulement si F est une base de E.

Concernant le produit des espaces vectoriels, on a :

Propriété 9 Si E1, . . . , En sont des espaces de dimensions finies alors :

dim(E1 × · · · × En) = dim(E1) + · · ·+ dim(En)

3.4 Somme directe et dimension

Fixons F et G 2 sous espaces d’un espace de dimension finie E.

Rappelons que si F ∩ G = {0} alors on note F ⊕ G = F + G et que F et G sont dits
supplémentaires quand E = F ⊕G.
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Propriété 10 Si F ∩G = {0} alors

dim(F ⊕G) = dim(F ) + dim(G)

Dans ce cas, en prenant une base de F puis une base de G et en les enchâınant, on construit
une base de F ⊕G. On parle dans ce cas de base adaptée à la somme précédente.

Dans le cas où la somme n’est pas directe, on a plus généralement :

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G)

(formule dite de Grassmann)

Plus généralement, si on a F1, . . . , Fn des sous espaces de E tel que :

F1 ⊕ · · · ⊕ Fn = E

alors dim(E) = dim(E1) + dim(En) et on construit une base adaptée de E à la somme
précédente en enchâınant des bases respectives de E1, . . . En.

Concernant la caractérisation des supplémentaires, on obtient :

Théorème 9 Si F et G sont 2 sous espaces d’un espace vectoriel E de dimension finie E
alors :

Si

{
F ∩G = {0}
dim(F ) + dim(G) = dim(E)

alors F ⊕G = E

Du coup :

Propriété 11 Tout sous espace F d’un espace vectoriel E de dimension finie admet des
supplémentaires (plusieurs) qui ont tous la même dimension : dim(E)− dim(F ).

Plus généralement :

Propriété 12 Si F1, . . . , Fn sont des sous espaces de E alors :

dim(F1 + · · ·+ Fn) ≤ dim(F1) + · · ·+ dim(Fn)

et on a F1 ⊕ · · · ⊕ Fn = E si et seulement si on a égalité.

Savoirs et savoirs faire indispensables

Savoirs

Définition d’un espace vectoriel, exemples de base.
Définition d’un sous espace vectoriel, d’une somme vectorielle, d’une somme directe.
Définition d’une famille libre, génératrice, d’une base.
Définition de la dimension. Dimensions des espaces classiques. Dimension d’une somme

et d’une somme directe. Rang d’une famille.
Théorèmes des bases incomplètes et extraites.
Formule de Grassmann
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Savoir-faire

Vérifier qu’un ensemble est un sous espace d’un espace donné.
Vérifier qu’une famille est libre, génératrice, est une base.
Mise en œuvre des théorèmes des bases incomplètes et extraites. Calcul du rang d’une

famille.
Utiliser la formule de Grassmann.

10


