
[DS4] Corrigé

PROBLÈME I

Microphone de guitare

I.1) Circuits équivalents :

R

Ri
e(t) s(t)

Régime basse fréquence

R

e(t) s(t)

Régime basse fréquence

En basse fréquence, s(t) = e(t) +Ri = e(t) d’après la loi des mailles et avec i = 0, donc le filtre est passant.
En haute fréquence, s(t) = 0 aux bornes d’un fil, donc le filtre est non-passant
Pour conclure, le filtre est probablement un passe bas.

I.2) En RSF, le circuit équivalent en complexe est :

ZR ZL

ZCe s

En utilisant la relation du diviseur de tension :

H(jω) =
s

e
=

ZC

ZC + ZR + ZL

=
1

1 +
ZR

ZC
+

ZL

ZC

Avec ZR = R, ZL = Ljω et ZC =
1

Cjω
il vient :

H(jω) =
1

1 +RCjω + LC(jω)2

I.3) On identifie : H0 = 1 , LC =
1

ω2
0

et RC =
1

Qω0
d’où ω0 =

1√
LC

et Q =
1

RCω0
=

1

r

√
L

C
.

I.4) Il y a résonance lorsque l’amplitude de s passe par un maximum pour une valeur finie de la pulsation, ce qui correspond

à un maximum pour |H(jω)| = 1√(
1− ω2

ω2
0

)2

+

(
ω

Qω0

)2
.

La fonction 1/
√ étant strictement décroissante de R+∗ dans R+∗, cela revient à trouver le minimum de f(x) = (1− x2)2 +

(x/Q)2 où x = ω/ω0.

f ′(x) = −4x(1− x2) +
2x

Q2
= 4x

(
x2 − 1 +

1

2Q2

)
.

x > 0 donc f ′(x) s’annule pour x = xr =

√
1− 1

2Q2
qui est bien défini lorsque Q >

1√
2

.

Pour x < xr, f ′(x) < 0 et pour x > xr, f ′(x) > 0 : xr est bien un minimum de la fonction f(x).

En conclusion, il y a résonance en ωr = ω0xr = ω0

√
1− 1

2Q2
si Q >

1√
2

.
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I.5) Le gain en décibel est défini comme GdB = 20 log(G(w)), où

G(ω) = |H(jω)| = 1√(
1− ω2

ω2
0

)2

+

(
ω

Qω0

)2

On trace le diagramme de Bode asymptotiqueen gain :
— en basse fréquence pour ω ≪ ω0, G(ω) ≈ 1 donc GdB,BF = 0 ;

— en haute fréquence pour ω ≪ ω0, G(ω) ≈ ω2
0

ω2
donc GdB,HF = −40 log(ω/ω0) .

Ces asymptotes se coupent en ω = ω0.
On obtient le diagramme de Bode suivant :

log(ω/ω0)

GdB

−
40 dB

par décade

I.6) On utilise un GBF pour générer une tension d’entrée sinusoïdale de fréquence variable. Avec un oscilloscope (ou deux
multimètres en mode AC), on mesure les amplitudes Em de e(t) et Sm de s(t). Le gain en décibel est obtenu en calculant

GdB = 20 log

(
Sm

Em

)
. On répète l’opération pour de nombreuses fréquences de façon à obtenir des mesures régulièrement

espacées sur un axe logarithmique, ce qui permet de tracer le graphe.
Remarque : dans le cas du micro, ce n’est possible d’effectuer ces mesures car la tension e n’est pas produite par un générateur
mais par l’oscillation de la corde, qu’il est difficile de faire varier sur de grands intervalles de fréquence.

I.7) Le gain statique est obtenu en étudiant le circuit équivalent dans le régime basse fréquence. Ici on a :

R

Rpe0 s0

Par le diviseur de tension, il vient s =
Rp

Rp +R
e donc le gain statique est H ′

0 =
s0
e0

=
Rp

Rp +R
.

Remarque : on peut aussi l’obtenir en calculant à nouveau la fonction de transfert et en prenant la limite ω → 0, mais les
calculs sont plus laborieux.

On remarque que le gain statique est diminué sous l’effet de la résistance Rp, ce qui permet de diminuer l’intensité sonore
restituée et notamment de créer un son qui vibre (principe de la pédale « wah-wah »).

I.8) Pour une association parallèle on a :

Z =
(ZL + ZR)ZC

ZL + ZR + ZC

=
ZL + ZR

1 +
ZL+ZR

ZC

On obtient :

Z =
R+ Ljω

1− LCω2 +RCjω
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I.9) On ne peut pas mesurer simultanément les tensions ur et uZ , car la masse de l’oscilloscope est imposée par la présence
du générateur. On peut mesurer simultanément e et UZ . On utilise alors le menu MATH de l’oscilloscope pour lui faire
afficher ur = e− uZ .

I.10) On passe le circuit en complexe, avec les amplitudes complexes des tensions et de l’intensité :

E

r

Ur

I Z

UZ

D’après la définition de l’impédance, Ur = rI et UZ = ZI. On en déduit Z = r
UZ

UR

.

I.11) La période est de 10 divisions soit T = 1,0ms, la fréquence vaut donc f =
1

T
= 1,0 kHz .

On prend le module de l’impédance dans l’expression obtenue à la question précédente : |Z| = r
|UZ |
|Ur|

.

Or le module de l’amplitude complexe d’une tension est son amplitude réelle donc |Z| = r
UZm

Urm
.

Expérimentalement on mesure UZm = 2,6V et Urm = 3,0V donc |Z| = 8,7 kΩ .

On prend l’argument de l’impédance dans l’expression obtenue à la question précédente : arg(Z) = arg(UZ) − arg(Ur) =
∆φUZ/Ur

qui est le déphasage de UZ par rapport à Ur.

La tension UZ avance de ∆t = 200 µs sur Ur donc arg(Z) = ∆φUZ/Ur
= 2πf∆t = 1,3 rad .

I.12) Lorsque ω → 0, Z ≈ R donc |Z| ≈ R . On lit directement cette limite qui semble atteinte sur le graphe fourni :

R = 2,0 kΩ .

I.13) On peut mettre Z sous la forme :

Z = RQ2 1

1 + jQ
(

ω
ω0

− ω0

ω

)
Le module est alors :

|Z| = RQ2√
1 +Q2

(
ω
ω0

− ω0

ω

)2

Il prend sa valeur maximale lorsque le dénominateur prend sa valeur minimale. Or le dénominateur est borné inférieurement
par 1 et cette borne est atteinte en ω = ω0 : le maximum de |Z| se fait donc en ω = ω0 et vaut |Z|max = RQ2.
On lit graphiquement que le maximum se fait à la fréquence f0 = 3,0× 103 Hz soit à la pulsation ω0 = 2πf0 = 1,9× 104 rad · s−1.

La valeur maximale vaut |Z|max = 2× 105 Ω donc Q =

√
|Z|max

R
= 10.

On a alors C =
1

RQω0
= 2,7 nF et L =

RQ

ω0
= 1,1H .
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PROBLÈME II

Décomposition du protoxyde d’azote

II.1) N2O possède 16 électrons qui s’assemblent en 8 doublets. On peut représenter trois formes mésomères :

O
⊕
N

⊖
N

⊖
O

⊕
N N

⊖
O N

⊕
N

La dernière forme ne respecte pas la règle de l’octet, l’atome d’azote situé à droite n’ayant que 3 doublets autour de lui.

II.2) O étant plus électronégatif que N, il est plus probable que ce soit lui qui porte la charge formelle négative. La
deuxième forme est ainsi la plus probable.
Pour cette forme, la liaison O-N est polarisée fortement de O vers N ce qui confère un moment dipolaire à la molécule.
Ce moment dipolaire est légèrement atténué par les oscillations peu fréquentes vers la première forme dont le moment
dipolaire est opposé.

II.3) Soit ξ(t) l’avancement à l’instant t, il est tel que n(t) = n1 − ξ(t). On a aussi nN2
(t) = ξ(t) et nO2

=
1

2
ξ(t)

La quantité totale de gaz à l’instant t est ntot(t) = nN2O(t)+nN2
(t)+nO2

= n(t)+
3

2
ξ(t) = n(t)+

3

2
(n1−n(t)) =

3

2
n1−

1

2
n(t).

D’après la loi des gaz parfaits, P (t) =
ntot(t)RT

V
=

3

2
× n1RT

V
− 1

2
× n(t)RT

V
.

Initialement il n’y a que du protoxyde d’azote donc P1 =
n1RT

V
.

On en déduit la relation demandée :

P (t) =
3

2
P1 −

n(t)RT

2V
(1)

II.4) On dérive l’expression (1) : dP

dt
= −RT

2V

dn

dt
=

RT

2
v.

Donc la vitesse de réaction a pour expression : v =
2

RT

dP

dt
.

II.5) On suppose la réaction d’ordre 1 donc la loi de vitesse est v = k[N2O] = k
n(t)

V
.

Or n(t)

V
= − 2

RT

(
P (t)− 3

2
P1

)
d’après la relation (1).

On en déduit 2

RT

dP

dt
= − 2k

RT

(
P (t)− 3

2
P1

)
soit dP

dt
= −k

(
P (t)− 3

2
P1

)
.

Cette équation se met sous la forme d’une équation différentielle du premier ordre : dP

dt
+ kP (t) =

3

2
kP1 .

II.6) La solution générale de cette équation est P (t) =
3

2
P1 + λe−kt.

La condition initiale est P (0) = P1 soit 3

2
P1 + λ = P1 d’où λ = −1

2
P1.

Pour conclure, la solution est P (t) =
3

2
P1 −

1

2
P1e

−kt .

t0

P

P1

3P1

2

4 / 5



[DS4] Corrigé

II.7) Il vient 3− 2
P (t)

P1
= 3− (3− e−kt) = e−kt donc ln

(
3− 2

P (t)

P1

)
= −kt.

Le graphe de ln

(
3− 2

P

P1

)
= f(t) est effectivement bien modélisé par une droite passant par l’origine, f(t) est donc linéaire.

Ceci confirme l’hypothèse de l’ordre 1 pour la réaction.

On peut alors interpréter la pente de la droite comme −k. En prenant le dernier point sur le graphe, on a −k =
−1

90 s
d’où

k = 1,1× 10−2 s−1 .

II.8) Le temps de demi-réaction est la durée au bout de laquelle l’avancement a atteint la moitié de sa valeur finale. Pour
une réaction totale, c’est aussi la durée pour laquelle la moitié du réactif initialement présent a été consommé.
On obtient ici t1/2(T1) = 63 s .

II.9) La loi d’Arrhenius relie la constante de vitesse à la température : k(T ) = A exp

(
− Ea

RT

)
.

On en déduit :
t1/2(T2)

t1/2(T1)
=

k(T1)

k(T2)
= exp

(
Ea

R

(
1

T2
− 1

T1

))
Avec T1 = 873K, T2 = 1200K, Ea = 280 kJ ·mol−1 et R = 8,314 J ·mol−1 ·K−1 on obtient

t1/2(T2)

t1/2(T1)
= 2,72× 10−5 donc

t1/2(T2) = 1,7ms .

II.10) Cette durée étant plus faible que celle de la compression, la cinétique de libération de dioxygène par la décomposition
du protoxyde d’azote est suffisamment rapide pour assurer le « boost » en même temps que la compression se produit.
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