
Chapitre 13 : Dérivation.

Plan
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1 Dérivée d’une fonction

On considère une fonction réelle f définie sur un intervalle I et a un point I. On rappelle :

Définition 1 La fonction f est dite dérivable en a et a pour nombre dérivé f ′(a)
quand :

lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
= f ′(a)

Le nombre dérivé f ′(a) est aussi noté (surtout en physique) :

f ′(a) = Df(a) =
df(x)

dx
(a)

Remarquons qu’une fonction dérivable en un point a y est continue et que dans ce cas
la droite d’équation :

y = f(a) + f ′(a)(x− a)

est la tangente à la courbe représentative de f en x = a.

Plus précisément :
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Propriété 1 La fonction f est dérivable en a si et seulement si :

f(a+ h) = f(a) + h.f ′(a) + h.ϵ(h)

où ϵ est une fonction définie au voinage de 0 et tendant vers 0 en 0 : ϵ(h) −→
h→0

0

Au passage, rappels :

sin(x)
x

−→
x→0

1
sh(x)
x

−→
x→0

1
tan(x)

x
−→
x→0

1
th(x)
x

−→
x→0

1
arcsin(x)

x
−→
x→0

1
arctan(x)

x
−→
x→0

1
exp(x)−1

x
−→
x→0

1
(1+x)α−1

x
−→
x→0

α (α ∈ R)

Si la limite limx→a
f(x)− f(a)

x− a
existe à droite (resp. à gauche), on dit que la fonction f

est dérivable à droite (resp. à gauche ) en a et on pose, quand les termes existent :

f ′
d(a) = lim

x→a+

f(x)− f(a)

x− a
f ′
g(a) = lim

x→a−

f(x)− f(a)

x− a

f ′
d(a), s’il existe est le nombre dérivé à droite de f en a.
f ′
g(a), s’il existe est le nombre dérivé à gauche de f en a.

Une fonction est dérivable en un point a qui n’est pas une extrémité de I si et seulement
si elle y est dérivable à droite et à gauche et si f ′

d(a) = f ′
g(a).

Propriété 2 Si f et g sont dérivables en un point a alors les fonctions f + g, λf et f.g
sont dérivables en a avec les règles opératoires suivantes :

� (f + g)′(a) = f ′(a) + g′(a)

� (λf)′(a) = λf ′(a)

� (f.g)′(a) = f ′(a).g(a) + g(a).f ′(a)

Si f et g sont dérivables en a, et si g(a) 6= 0 alors
f

g
et

1

g
sont dérivables en a et :(

f

g

)′

(a) =
f ′(a).g(a)− g′(a).f(a)

g2(a)

Concernant les fonctions composées, on montre :
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Théorème 1 Si f est une fonction dérivable en a et si g est une fonction dérivable en
f(a) alors g ◦ f est dérivable en a et :

(g ◦ f)′(a) = f ′(a).g′(f(a))

formule souvent notée :

d(g(f(x))

dx
(a) =

df(x)

dx
(a).

dg(y)

dy
(f(a))

en ”pensant” : y = f(x).

On considère une fonction f continue sur un intervalle I.

Définition 2 Si la fonction f est dérivable en tout en point de I, on obtient une fonction :

f ′

I → R

x 7→ f ′(x) =
df

dx
(x)

qui est appelée la fonction dérivée de f .

On rappelle le tableau de dérivées suivant (u est une fonction dérivable).

Fonction f Dérivée f ′ Domaine de validité
xn nxn−1 n ∈ Z
un nu′un−1

xα αxα−1 α ∈ R,x > 0
uα u′αuα−1 α ∈ R,u > 0

u−1 1

u′(u−1)
u′ 6= 0

ex ex

eu u′eu

ln(|x|) 1

x
x 6= 0

ln(u)
u′

u
u > 0

cos(x) − sin(x)
sin(x) cos(x)

tan(x) 1 + tan2(x) =
1

cos2(x)
R−

{π

2
+ k.π/k ∈ Z

}
arccos(x)

−1√
1− x2

−1 < x < 1

arcsin(x)
1√

1− x2
−1 < x < 1

arctan(x)
1

1 + x2
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2 Étude des fonctions dérivables

2.1 Points critiques

On considère ici une fonction f définie et dérivable sur un intervalle I et a un point situé
à l’intérieur (pas au bord) de I.
Rappelons que f admet un extremum (resp. maximum, resp. minimum) local en a s’il

existe un intervalle ouvert J contenant a et tel que fJ admette un extremum (resp. maxi-
mum, resp. minimum) en a.

Définition 3 On dit le point a est un point critique de f quand :

f ′(a) = 0

La propriété associée est la suivante :

Propriété 3 Si f admet un extremum local au point a alors a est point critique de f .

Attention : le maximum d’une fonction, s’il est atteint au bord de l’intervalle de définition,
ne correspond pas forcément à un point critique. D’autre part, la réciproque à la propriété
précédente est clairement fausse.

2.2 Variations

On considère une fonction réelle f continue sur un intervalle [a, b] (a et b réels) et dérivable
sur ]a, b[.

Théorème 2 (Théorème de Rolle) Si f(a) = f(b) alors il existe x0 ∈]a, b[ tel que :
f ′(x0) = 0

On en déduit, dans le cas général :

Théorème 3 (Égalité des accroissements finis) Si f est continue sur [a, b] (a < b) et
dérivable sur ]a, b[, il existe x0 ∈]a, b[ tel que :

f ′(x0) =
f(b)− f(a)

b− a

On obtient comme corolaire :

Théorème 4 (Inégalité des accroissements finis) Si f est continue sur [a, b] (a < b)
et dérivable sur ]a, b[, et si, pour tout x ∈]a, b[ :

m ≤ f ′(x) ≤ M
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alors :
m(b− a) ≤ f(b)− f(a) ≤ M(b− a).

Si f est continue sur [a, b] et dérivable sur ]a, b[, et si, pour tout x ∈]a, b[ :

|f ′(x)| ≤ M

alors :
|f(b)− f(a)| ≤ M |b− a|

Il suit, pour ce qui concerne les études de fonctions, les résultats bien connus.

Propriété 4 Si f est continue sur [a, b] (a < b) et dérivable sur ]a, b[, et si, pour tout
x ∈]a, b[ :

� f ′(x) = 0 alors f est constante sur [a, b] (réciproque vraie) ;

� f ′(x) ≥ 0 alors f est croissante sur [a, b] (réciproque vraie) ;

� f ′(x) ≤ 0 alors f est décroissante sur [a, b] (réciproque vraie) ;

� f ′(x) > 0 alors f est strictement croissante sur [a, b] (réciproque fausse) ;

� f ′(x) < 0 alors f est strictement décroissante sur [a, b] (réciproque fausse).

L’équivalent du théorème de prolongement par continuité est donné par le résultat sui-
vant.

Théorème 5 Si une fonction f est continue sur I, dérivable sur I−a où I est un intervalle
et a est un point de I et si :

lim
x→a

f ′(x) = l

(l fini ou infini) alors :

lim
x→a

f(x)− f(a)

x− a
= l

Si de plus l est réel alors f est dérivable en a avec f ′(a) = l et f ′ est continue en a.

Le théorème de la bijection peut se reformuler dans ce contexte :

Théorème 6 (Théorème de la bijection dérivable) Soit I =]a, b[ un intervalle réel
et f une fonction dérivable sur I avec f ′ > 0 (ou f ′ > 0) sur I alors f est une bijection
de I sur f(I).

Sa réciproque g est dérivable et pour tout y de f(I) :

g′(y) =
1

f ′(g(y))
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3 Fonctions de classe Cn

On considère une fonction réelle f définie sur un intervalle I.

On dit que la fonction f est de de classe C1 sur I si elle est dérivable et si f ′ est continue
sur I. On note C1(I) l’ensemble des fonctions réelles de classe C1 sur l’intervalle I.

En remarquant que les fonctions constantes sont de classe C1, on montre que l’ensemble
C1(I) est un espace vectoriel, plus précisément un sous espace de C(I), aussi noté C0(I),
espace vectoriel des fonctions continues sur I.

Si f ′ est elle même de classe C1 sur I, on pose f (2) = (f ′)′ (fonction dérivée seconde
de f) et on dit que f est de classe C2 sur I. Plus généralement, par récurrence :

Définition 4 Soit n un entier (n > 0), on dit qu’une fonction f est de classe Cn sur I si
f ′ est de classe Cn−1 sur I et on pose :

f (n) = (f (n−1))′ = (f ′)(n−1) =
d

dx
f (n−1)

f (n) est la dérivée n-ième de la fonction f .

On note aussi :

f (n)(x) = Dnf(x) =
dnf

dxn
(x)

L’ensemble des fonctions de classe Cn sur I est noté Cn(I). Les règles classiques sur
la dérivation font que Cn(I) est un espace vectoriel, plus précisément un sous espace de
C(n−1)(I).

Si une fonction f est de classe Cn pour tout n de N alors on dit de f est de classe C∞.

L’ensemble des fonctions de classe C∞ sur I est noté C∞(I). C∞(I) est un espace vectoriel.
Plus précisément, on obtient les inclusions d’espaces vectoriels :

R[x] ⊂ C∞(I) ⊂ . . . Cn(I) ⊂ Cn−1(I) ⊂ · · · ⊂ C1(I) ⊂ C(I) ⊂ RI

ainsi que les application linéaires :

D

{
Cn(I) → Cn−1(I)

f 7→ f ′ et Dn

{
Cn(I) → C0(I)

f 7→ f (n)

D

{
C∞(I) → C∞(I)

f 7→ f ′ et Dn

{
C∞(I) → C∞(I)

f 7→ f (n)

Ainsi, on a les règles opératoires :
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Propriété 5 Si n est un entier, f et g de classe Cn au moins :

� (f + g)(n) = f (n) + g(n),

� (λf)(n) = λf (n)

Concernant le produit, on obtient :

Théorème 7 (Formule de Leibniz) Si f et g sont de classe Cn sur un intervalle I alors
f.g est de classe Cn sur I et

Dn(f.g) =
dn

dxn
f = (f · g)(n) = f (n) · g +

(
n

1

)
f (n−1) · g′ + · · ·+

(
n

n− 1

)
f ′ · g(n−1) + f · g(n)

Dn(f.g) =
dn

dxn
f = (f · g)(n) =

n∑
k=0

(
n

k

)
f (k) · g(n−k)

Les fonctions ”classiques” sont de classe C∞ sur leurs domaines de définitions respectifs
sauf éventuellement en quelques points (les fonctions puissances xα avec 0 < α < 1 en 0,
arcsin en ±1...).

Enfin concernant les composées et réciproques (n est un entier ou ∞) :

Théorème 8 Si f et g sont de classe Cn sur des intervalles I et J respectivement avec
g(J) ⊂ I alors f ◦ g est de classe Cn sur J .

Si f : I → J est de classe Cn sur I, bijective et si f ′ ne s’annule pas sur I alors sa
réciproque f−1 : J → I est de classe Cn sur J .

L’analogue du théorème de prolongement par continuité est donné par les résultats sui-
vants.

Théorème 9 Soit une fonction réelle continue sur un intervalle I 3 a.
Si f est de classe Ck (k ∈ N∗ ∪∞) sur I − a et si pour tout i entier 1 ≤ i ≤ k : f (i)(x) a

une limite finie en a : li ∈ R alors f est de classe Ck sur I et, pour tout i entier 0 ≤ i ≤ k :
f (i)(a) = li

Conséquence :

Théorème 10 (Théorème de prolongement des fonctions Ck) Soit une fonction réelle
définie sur un intervalle I 3 a.

Si f est de classe Ck (k ∈ N∪∞) sur I − a et si pour tout i entier 0 ≤ i ≤ k : f (i)(x) a
une limite finie en a : li ∈ R alors f se prolonge en une fonction classe Ck sur I et, pour
tout i entier 0 ≤ i ≤ k : f (i)(a) = li ∈ R
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4 Fonctions complexes

Rappelons que si f

{
I → C
x 7→ f(x) = Re(f)(x) + i · Im(f)(x)

est une fonction à valeurs

complexes alors f est dérivable sur I si et seulement si Re(f) et Im(f) sont dérivable sur
I et dans ce cas, si x ∈ I :

f ′(x) = Re(f)′(x) + i · Im(f)′(x)

On dit que f est de classe C1 sur I si Re(f) et Im(f) le sont. Les règles algébriques de
dérivation de base : somme, produit, quotient, composition se généralisent sans difficulté
aux fonctions à valeurs complexes de même la plupart des résultats de ce chapitre.

Attention par contre les résultats liés à l’ordre ne passent pas, en particulier le théorème
de Rolle ! Par contre, on a :

Théorème 11 (Inégalité des accroissements finis) Si f à valeurs complexes et conti-
nue sur [a, b] et dérivable sur ]a, b[, et si, pour tout x ∈]a, b[ :

|f ′(x)| ≤ M

alors :
|f(b)− f(a)| ≤ M |b− a|

et

Théorème 12 (Théorème de prolongement des fonctions Ck) Soit une fonction com-
plexe définie sur un intervalle I 3 a.

Si f est de classe Ck (k ∈ N∪∞) sur I − a et si pour tout i entier 0 ≤ i ≤ k : f (i)(x) a
une limite finie en a : li ∈ C alors f se prolonge en une fonction classe Ck sur I et, pour
tout i entier 0 ≤ i ≤ k : f (i)(a) = li

Savoirs et savoirs faire indispensables

Savoir

Tableau des dérivées, théorèmes fondamentaux sur les fonctions dérivables, théorème de
prolongement des fonctions dérivables.

Savoir faire

Études de fonctions simples.
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