Chapitre 14 : Applications linéaires.
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Dans tout le chapitre, K est R ou C (corps des scalaires) et on consideérera les espaces
vectoriels sur K.

1 Applications linéaires

1.1 Définitions

Définition 1 Si F et F' sont 2 espaces vectoriels, et f : E — F est une application. On
dit que f est une application linéaire (ou application K-linéaire) quand pour tous
vecteurs u, v de ' et A € K :

On note L(E, F) l'ensemble des applications linéaires de E dans F'.
On note L(E) l’ensemble des applications linéaires de E dans E.

Remarquons que si f : E — F est linéaire alors f(0g) = Op.

Propriété 1 Si f et g sont 2 applications linéaires de & dans F' et A € K alors :

e [+ g est une application linéaire de E dans F.

o \f est une application linéaire de E dans F'.

En remarquant que Uapplication nulle est linéaire, on obtient que L(E, F') est un espace
vectoriel. De méme, L(E) est un espace vectoriel.

Dans le cas ou E = F', une application linéaire de £ dans lui méme s’appelle un endo-
morphisme de F.

L’application identité Idg : v — v est un endomorphisme de E : Idg € L(E).

E—-F
Si A € K, I'application \ est un endomorphisme de E. C’est 'homothétie
v = A

de rapport A\ de E.

1.2 Composition des applications linéaires

Ici F, F et G sont des espaces vectoriels.



Théoréme 1 Dans les conditions précédentes, si f € L(E,F) et g € L(F,G) sont
linéaires alors g o f est linéaire :

9f =gof€L(EG)
Si f € L(E) et g € L(E) sont linéaires alors fog, go f et f2= fo f sont linéaires :
fog€L(E) gof€eL(E) fof=[f"€L(E)

On observe de plus les regles de calcul suivantes (f, g, h sont des applications linéaires
telles que les compositions aient un sens, A est un scalaire) :

e fo(g+h)=fog+ foh.
o (f+g)oh=foh+goh.
o fo(Ag) =A(foyg)

e (Af)o(g) =A(foyg)

Ainsi Pensemble £(F) muni de I'addition et de composition des endomorphismes est un
anneau (d’éléments neutres I’application nulle pour I’addition et I'application identité pour
le produit), non commutatif (pour ce qui concerne le produit) quand dim(FE) > 2.

1.3 Isomorphismes, automorphismes

Théoréme 2 Si f : £ — F est linéaire et bijective alors f~': F — E est aussi linéaire.
Dans ce cas, on dit que [ est un isomorphisme entre E et F'. On note Isom(E, F') l’en-
semble des isomorphismes de E dans F. On a ainsi : f~' € Isom(F, E).

Si f: E — E est linéaire et bijective alors f~' : E — E est aussi linéaire. Dans ce
cas, on dit que [ est un automorphisme de E. On note Aut(E) l’ensemble des automor-
phismes de E. Aut(E) s’appelle aussi le groupe linéaire de E. Pour cette raison il est aussi
noté : GL(E). Notons au passage que Idg est un automorphisme de E.

En compilant les différents résultats, on obtient ainsi entre autres :
Théoréme 3 L’ensemble GL(E) est un groupe pour l'opération o d’élément neutre Idg.

Les isomorphismes préservent les bases, on a méeme :

Propriété 2 Si B = (e;);es est une base de E et si f est une application linéaire entre les
espaces E et F alors la famille f(B) = (f(e;))ier est une base de E si et seulement si f
est un isomorphisme.



1.4 Image, noyau

Soit F et F' des espaces vectoriels et f une application linéaire de E' dans F': f € L(E, F).

Théoréme 4 L’ensemble :

Im(f) = f(E) ={y = f(v) € F/v e E}

est un sous espace vectoriel de F' appelé image de f.
L’ensemble :

Ker(f) = {v € E/f(v) = 0}

est un sous espace vectoriel de E appelé noyau de f.

Plus généralement, si f est linéaire de £/ dans F' et GG est un sous espace de E alors
f(G) ={f(x)/x € G} est un sous espace de F' appelé image de G.

Si f est linéaire de E dans F et G est un sous espace de F alors [~}(G) = {z € E/f(x) €
G} est un sous espace de E appelé image réciproque de G.

Ces notions seront tres utiles dans la pratique. Une premiere application est la suivante.

Théoreme 5 Une application linéaire f : E — I est
e surjective si et seulement si Im(f) = F.
e injective si et seulement si Ker(f) = {0}.

e un isomorphisme (un automorphisme si E = F) si et seulement si les 2 conditions
précédentes sont réalisées.

2 Projections et symétries

On considere E un espace vectoriel et F' et G 2 sous espaces vectoriels supplémentaires

dans FE c’est a dire :
E=Fad

Rappelons que dans ces conditions, si u € F alors on peut écrire de maniere unique :
U=v+w

avec v € Fet w € G.
Avec les notation précédentes, on définit les applications suivantes :



u=v+w— prlu) =v

E—FE
ba u=v+w— peu) =w

{E%E
S

u=v4+w—su)=v—w

F—-F
Pr

Définition 2 pp est un endomorphisme de E appelé projection sur F parallélement
a G. Il a pour image F et pour noyau G.

pe est un endomorphisme de E appelé projection sur G parallélement a F. Il a
pour image G et pour noyau F.

s est un automorphisme de E appelé symétrie par rapport a F paralléelement a

G.
Ona,siz € F:pp(x) =2, pe(z) =0, s(x) = x.
Ona,siz e G :pr(r) =0, pe(x) =z, s(z) = —=x.
Pour tout « € E pr(pr(x)) = pr(x) et s(s(z)) = z. On note :
propr=pr Ssos=Idg
Le théoreme suivant donne une réciproque a cette propriété :

Théoreme 6 Soit p un endomorphisme de E vérifiant pop = p alors p est une projection.
Plus précisément, on a :
Im(p) & Ker(p) = E

et p est la projection sur Im(p) parallélement o Ker(p).

On a un résultat analogue concernant les symétries :

Théoreme 7 Soit s un endomorphisme de E vérifiant sos = Idg alors s est une symetrie.
Plus précisément, on a :
Ker(s — Id) & Ker(s + Id) = E

et s est la symétrie par rapport a Ker(s — Id) parallélement a Ker(s + Id).



3 Rang d’une application linéaire

3.1 Applications linéaires et bases

On considére maintenant B = (e;);c;r une base d'un espace vectoriel E et F' = (f;)ier
une famille indexée par I d'un espace vectoriel G.

Propriété 3 Il existe une unique application linéaire ¢r : E — G telle que : ¢(e;) = f;
pour tout i € I. Son image est Vect(F) et :

e ¢ est surjective si et seulement si la famille F' engendre G.
e ¢ est injective si et seulement la famille F est libre.

o O est un isomorphisme si et seulement si la famille F' est une base de G.
On a aussi :

Si F' est un espace vectoriel, si Fy, ..., E, sont n sous espaces de E tels que £ = @& | E;
et si pour tout 1 <17 < n, u; est une application linéaire de E; dans F' alors il existe une
unique application linéaire u de E dans F' tel que pour tout 1 <1i <n :u; = u/E;.

Dans ce cas :

Im(u) = Im(uy) & - - & Im(uy,)

3.2 En dimension finie
On considere maintenant B = (ey, .. ., €,) une base d'un espace vectoriel £ de dimension

finie et F' = (fi,..., f,) une famille d’un espace vectoriel G.

Propriété 4 Il existe une unique application linéaire ¢pp : E — G telle que :

¢(61) = fl?"'>¢(6n) = fn

Son image est Vect(fi,..., fn).
Son noyau est lensemble des (A1, ..., \,) tel que A\ fi + -+ Ao fn = 0.
En particulier :

e Op est surjective si et seulement si la famille F' engendre G.
e ¢ est injective si et seulement la famille F est libre.

e ¢ est un isomorphisme si et seulement si la famille F' est une base de G.
On obtient ainsi la propriété suivante :

Propriété 5 Deux espaces E et F' de dimensions finies sont isomorphes si et seulement
st ils ont la méme dimension.

Enfin, concernant les espaces L(E, F)) :



Propriété 6 Si E et F' sont de dimension finie alors lespace L(E, F) est de dimension
finie et méme :

dim(L(E, F)) = dim(F) x dim(F)
dim(L(E)) = dim(E)?

3.3 Théoréme du rang
Soit f : E — F une application linéaire.

Définition 3 On pose :
rg(f) = dim(Im(f))

rg(f) qui est un entier ou +oo est le rang de Uapplication linéaire E. Il est fini si E ou
F sont de dimensions finies.

Premiere remarque :
Propriété 7 Siu e L(E,F) et v e L(F,G) sont des application linéaires alors :
rg(v o u) < min(rg(u), 1g(v))
On obtient ensuite 'importante formule du rang.

Théoréme 8 (Théoréme du rang) Soit f : E — F une application linéaire avec E de
dimension finie alors :

dim(F) = dim(Ker(f)) + dim(Im(f)) = dim(Ker(f)) + rg(f)

3.4 Quelques applications
Premiere conséquence importante concernant les isomorphismes et les automorphismes :

Propriété 8 Soit f : E — F une application linéaire avec E de dimension finie. f est
un isomorphisme entre E et F' si et seulement si dim(E) = dim(F') et Ker(f) = {0}.

Autrement dit :
< {dim(E) = dim(F)
Ker(f) = {0}

Soit f € L(E) un endomorphisme avec E de dimension finie.

alors : f € Isom(E, F)

f est un automorphisme de E si et seulement si Ker(f) = {0}.

Autrement dit :
Si Ker(f) = {0} alors f est un automosphisme.
f est un automorphisme de E si et seulement si rg(f) = dim(FE). Autrement dit :

Si Im(f) = E alors f est un automosphisme.



Concernant 'inversion :

Propriété 9 Soit f € L(E) g € L(FE) des endomorphismes avec E de dimension finie.
On a :
Si fog=1dg alors go f = Idg

Dans ce cas, [ et g sont des automorphismes de E. Plus généralement, si foqg ou go f
est un automorphisme de E alors f et g sont des automorphismes de E.

4 Hyperplans et formes linéaires

On considere E un espace vectoriel sur K.

Définition 4 Une forme linéaire sur E est une application linéaire u définie sur E a
valeurs dans K.

Les formes linéaires sur E forment un espace vectoriel de dimension (éventuellement
infinie) égale a celle de E.

On a des exemples ”canoniques” :

Si E est de dimension finie et B = (ey,...,¢,) est une base de E, alors pour tout v € E,
on peut écrire :
v=MA(v).er + -+ A(v).en

A (v), ..., A\n(v) étant des scalaires.
Les applications Aq,..., A\, sont des formes linéaires sur F dite formes linéaires coor-
données sur E. Elles forment une base de 1'espace des formes linéaires sur F.

Définition 5 Si H est un sous espace de E et sl existe u une forme linéaire non nulle
sur E telle que H = Ker(u) alors on dit que H est un hyperplan de E.

On a des caractérisations des hyperplans de E :

Propriété 10 Si H est un sous espace vectoriel de E alors H est un hyperplan de E si et
seulement si :
e [l existe une droite vectorielle D telle que E = D & H ou,
e Sidim(E) < oo :dim(H) = dim(F) — 1.
Notons du coup que les hyperplans de R? sont les droites vectorielles de R? et les hyper-
plans de R? sont les plans vectoriels de R3.

En fait, si H est un hyperplan de E toute droite non incluse dans E est un supplémentaire

de H.

On obtient du coup :



Propriété 11 Si u et v sont 2 formes linéaires sur E telles que ker(u) = ker(v) alors u
et v sont proportionnelles.

Si H est un hyperplan de E et si H = ker(u) avec u forme linéaire sur F, alors on dit
que la relation u(v) = 0 qui caractérise donc les vecteurs de H est une équation de H.

On montre par récurrence que l'intersection de m hyperplans d’un espace FE de dimen-
sion n est un sous espace de F de dimension au moins n — m.

Réciproquement :

Théoreme 9 Si E est un espace de dimension finie n, tout sous espace F' de E de dimen-
ston n — m est ['intersection de m hyperplans de E.

Si on se donne des équations respectives de ces m hyperplans : uy(v) =0, ..., up(v) =0
avec uy, ... , Uy, des formes linéaires sur E, celles ci sont indépendantes dans leur espace.
On dit qu’on a défini F' par m équations indépendantes.

Ici I'indépendance tient au fait que dans ce cas les formes linéaires uq, ...,u,, forment une
famille libre dans 'espace des formes linéaires sur E.

Dans le cas de R3, toute droite vectorielle peut ainsi étre définie par 2 équation linéaires
indépendantes.

5 Espaces affines

5.1 Notion d’espace affine

On considere un espace vectoriel E. C’est un espace de vecteurs dont le vecteur nul 0 .
C’est aussi un espace affine si on le considere comme un espace de points dont le point

0.
Ici on distinguera donc les points (lettres capitales) des vecteurs.

A tout couple A, B de points est associé par différence un vecteur : jﬁ avec les regles

classiques entre autres :
AB + BC = AC
AA=T

Définition 6 Si U est un vecteur de E, on lui associe une bijection de E espace affine :

E—F
A A+ =B avecﬁzﬁ

cette application est la translation de vecteur 0



On sera donc autorisé a utiliser la notation : B — A = zﬁ

E, on dit que F' est un sous espace affine
de E quand il existe un sous espace vectoriel ? de E et un point A de E tel que

F=At+F={A+7/q e F)}

Définition 7 On considere F' une partie de

Onaalors?:{EEE/BeF}, etpourtoutBGF:/H—?:BjL?.
Le sous espace ? est appelé espace directeur ou direction de ’espace affine F.

L’intersection de plusieurs sous espaces affines de F, si elle est non vide, est un sous
espace affine dirigé par un sous espace de I'intersection de leurs espaces directeurs.

Les sous espaces affines de R? sont les points (dirigés par le vecteur nul) les droites affines
de R? (dirigées par les droites vectorielles) et R? (dirigé par lui méme!).

Les sous espaces affines de R3 sont les points (dirigés par le vecteur nul), les droites
affines (dirigées par les droites vectorielles), les plans (dirigées par les plans vectoriels) et
R? (dirigé par lui méme!).

Un hyperplan affine H est un sous espace affine de F dont ’espace directeur est un
hyperplan de E. Il existe une forme linéaire non nulle sur £ et un scalaire ¢ tel que :

H={A€ E/u(A) =c}

La relation u(A) = ¢ est une équation affine de H. Deux équations affines d'un méme
hyperplan affine sont proportionnelles.

5.2 Repere affine et coordonnées

On considére ici E de dimension finie et on en fixe une base B = (uf, ..., u,). On fixe

aussi un point O de E comme espace affine. On dit qu’on s’est alors donné un repere
affine R = (O, B) de E.
Pour tout point M de E, il existe des scalaires (uniques) Aq, ... , A, tels que :

M=0+MNuj, + -+ N\,

C’est a dire :
—
OM = M\ + - + \ity,

On dit dans ce cas que M a pour coordonnées affines (\{,...,\,) et on note (parfois)
Mg = (seen ).
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6 Problemes linéaires

Définition 8 Soit E et F' 2 espaces vectoriels, f une application linéaire de E dans F' :
feL(EF) etb un vecteur de F.

Une équation linéaire ou probléme linéaire est un probleme du type :

(e): flv)=0

d’inconnue v € E.
Il lui est associée [’équation linéaire homogéne :

(eo) = flv)=0
d’inconnue v € FE.

Dans les conditions précédentes :

Théoréme 10 L’équation linéaire homogene (ey) a toujours au moins une solution :
v = 0. L’ensemble de ses solutions est le sous espace vectoriel Ker(f) de E.

L’équation (e) : f(v) = b a des solutions si et seulement si b € J(f). Si c’est le cas on
considere vy une solution particuliere : f(v1) =b. L’ensemble des solutions est alors :

U1 + Ker(f) = {Ul + Uo/f(vo) = 0}

C’est un sous espace affine de E dirigé par Ker(f).
Autrement dit, la solution générale de l’équation linéaire est obtenue en ajoutant a une
solution particuliere la solution générale de l’équation homogéne.

Savoirs et savoirs faire indispensables

Savoirs

Définition d’application linéaire, d’isomorphisme, automorphisme. Image, Noyau.
Définition d’une famille libre, génératrice, d’une base.

Définition de projection et d’une symétrie, caractérisation.

Définition et théoreme du rang d’une application linéaire.

Savoir-faire

Vérifier qu'une application est linéaire, est un isomorphisme.

Vérifier qu'une famille est libre, génératrice, est une base.

Calculer une image, un noyau, vérifier qu’'une application est un isomorphisme a ’aide
du théoreme du rang, calculer sa réciproque.
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