
Chapitre 14 : Applications linéaires.
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Dans tout le chapitre, K est R ou C (corps des scalaires) et on considèrera les espaces
vectoriels sur K.

1 Applications linéaires

1.1 Définitions

Définition 1 Si E et F sont 2 espaces vectoriels, et f : E → F est une application. On
dit que f est une application linéaire (ou application K-linéaire) quand pour tous
vecteurs u, v de E et λ ∈ K :

� f(u+ v) = f(u) + f(v) et

� f(λv) = λf(v).

On note L(E,F ) l’ensemble des applications linéaires de E dans F .
On note L(E) l’ensemble des applications linéaires de E dans E.

Remarquons que si f : E → F est linéaire alors f(0E) = 0F .

Propriété 1 Si f et g sont 2 applications linéaires de E dans F et λ ∈ K alors :

� f + g est une application linéaire de E dans F .

� λf est une application linéaire de E dans F .

En remarquant que l’application nulle est linéaire, on obtient que L(E,F ) est un espace
vectoriel. De même, L(E) est un espace vectoriel.

Dans le cas où E = F , une application linéaire de E dans lui même s’appelle un endo-
morphisme de E.

L’application identité IdE : v → v est un endomorphisme de E : IdE ∈ L(E).

Si λ ∈ K, l’application

{
E → E

v → λ.v
est un endomorphisme de E. C’est l’homothétie

de rapport λ de E.

1.2 Composition des applications linéaires

Ici E, F et G sont des espaces vectoriels.
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Théorème 1 Dans les conditions précédentes, si f ∈ L(E,F ) et g ∈ L(F,G) sont
linéaires alors g ◦ f est linéaire :

gf = g ◦ f ∈ L(E,G)

Si f ∈ L(E) et g ∈ L(E) sont linéaires alors f ◦ g, g ◦ f et f 2 = f ◦ f sont linéaires :

f ◦ g ∈ L(E) g ◦ f ∈ L(E) f ◦ f = f 2 ∈ L(E)

On observe de plus les règles de calcul suivantes (f, g, h sont des applications linéaires
telles que les compositions aient un sens, λ est un scalaire) :

� f ◦ (g + h) = f ◦ g + f ◦ h.
� (f + g) ◦ h = f ◦ h+ g ◦ h.
� f ◦ (λg) = λ(f ◦ g)
� (λ.f) ◦ (g) = λ(f ◦ g)

Ainsi l’ensemble L(E) muni de l’addition et de composition des endomorphismes est un
anneau (d’éléments neutres l’application nulle pour l’addition et l’application identité pour
le produit), non commutatif (pour ce qui concerne le produit) quand dim(E) ≥ 2.

1.3 Isomorphismes, automorphismes

Théorème 2 Si f : E → F est linéaire et bijective alors f−1 : F → E est aussi linéaire.
Dans ce cas, on dit que f est un isomorphisme entre E et F . On note Isom(E,F ) l’en-
semble des isomorphismes de E dans F . On a ainsi : f−1 ∈ Isom(F,E).

Si f : E → E est linéaire et bijective alors f−1 : E → E est aussi linéaire. Dans ce
cas, on dit que f est un automorphisme de E. On note Aut(E) l’ensemble des automor-
phismes de E. Aut(E) s’appelle aussi le groupe linéaire de E. Pour cette raison il est aussi
noté : GL(E). Notons au passage que IdE est un automorphisme de E.

En compilant les différents résultats, on obtient ainsi entre autres :

Théorème 3 L’ensemble GL(E) est un groupe pour l’opération ◦ d’élément neutre IdE.

Les isomorphismes préservent les bases, on a même :

Propriété 2 Si B = (ei)i∈I est une base de E et si f est une application linéaire entre les
espaces E et F alors la famille f(B) = (f(ei))i∈I est une base de E si et seulement si f
est un isomorphisme.
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1.4 Image, noyau

Soit E et F des espaces vectoriels et f une application linéaire de E dans F : f ∈ L(E,F ).

Théorème 4 L’ensemble :

Im(f) = f(E) = {y = f(v) ∈ F/v ∈ E}

est un sous espace vectoriel de F appelé image de f .
L’ensemble :

Ker(f) = {v ∈ E/f(v) = 0}

est un sous espace vectoriel de E appelé noyau de f .

Plus généralement, si f est linéaire de E dans F et G est un sous espace de E alors
f(G) = {f(x)/x ∈ G} est un sous espace de F appelé image de G.

Si f est linéaire de E dans F et G est un sous espace de F alors f−1(G) = {x ∈ E/f(x) ∈
G} est un sous espace de E appelé image réciproque de G.

Ces notions seront très utiles dans la pratique. Une première application est la suivante.

Théorème 5 Une application linéaire f : E → F est

� surjective si et seulement si Im(f) = F .

� injective si et seulement si Ker(f) = {0}.
� un isomorphisme (un automorphisme si E = F ) si et seulement si les 2 conditions
précédentes sont réalisées.

2 Projections et symétries

On considère E un espace vectoriel et F et G 2 sous espaces vectoriels supplémentaires
dans E c’est à dire :

E = F ⊕G

Rappelons que dans ces conditions, si u ∈ E alors on peut écrire de manière unique :

u = v + w

avec v ∈ F et w ∈ G.
Avec les notation précédentes, on définit les applications suivantes :
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pF

{
E → E

u = v + w → pF (u) = v

pG

{
E → E

u = v + w → pG(u) = w

s

{
E → E

u = v + w → s(u) = v − w

Définition 2 pF est un endomorphisme de E appelé projection sur F parallèlement
à G. Il a pour image F et pour noyau G.
pG est un endomorphisme de E appelé projection sur G parallèlement à F . Il a

pour image G et pour noyau F .
s est un automorphisme de E appelé symétrie par rapport à F parallèlement à

G.

On a, si x ∈ F : pF (x) = x, pG(x) = 0, s(x) = x.

On a, si x ∈ G : pF (x) = 0, pG(x) = x, s(x) = −x.

Pour tout x ∈ E pF (pF (x)) = pF (x) et s(s(x)) = x. On note :

pF ◦ pF = pF s ◦ s = IdE

Le théorème suivant donne une réciproque à cette propriété :

Théorème 6 Soit p un endomorphisme de E vérifiant p◦p = p alors p est une projection.
Plus précisément, on a :

Im(p)⊕Ker(p) = E

et p est la projection sur Im(p) parallèlement à Ker(p).

On a un résultat analogue concernant les symétries :

Théorème 7 Soit s un endomorphisme de E vérifiant s◦s = IdE alors s est une symetrie.
Plus précisément, on a :

Ker(s− Id)⊕Ker(s+ Id) = E

et s est la symétrie par rapport à Ker(s− Id) parallèlement à Ker(s+ Id).
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3 Rang d’une application linéaire

3.1 Applications linéaires et bases

On considère maintenant B = (ei)i∈I une base d’un espace vectoriel E et F = (fi)i∈I
une famille indexée par I d’un espace vectoriel G.

Propriété 3 Il existe une unique application linéaire ϕF : E → G telle que : ϕ(ei) = fi
pour tout i ∈ I. Son image est Vect(F ) et :

� ϕF est surjective si et seulement si la famille F engendre G.

� ϕF est injective si et seulement la famille F est libre.

� ϕF est un isomorphisme si et seulement si la famille F est une base de G.

On a aussi :

Si F est un espace vectoriel, si E1, . . . , En sont n sous espaces de E tels que E = ⊕n
i=1Ei

et si pour tout 1 ≤ i ≤ n, ui est une application linéaire de Ei dans F alors il existe une
unique application linéaire u de E dans F tel que pour tout 1 ≤ i ≤ n : ui = u/Ei.
Dans ce cas :

Im(u) = Im(u1)⊕ · · · ⊕ Im(un)

3.2 En dimension finie

On considère maintenant B = (e1, . . . , en) une base d’un espace vectoriel E de dimension
finie et F = (f1, . . . , fn) une famille d’un espace vectoriel G.

Propriété 4 Il existe une unique application linéaire ϕF : E → G telle que :

ϕ(e1) = f1, . . . , ϕ(en) = fn

Son image est Vect(f1, . . . , fn).
Son noyau est l’ensemble des (λ1, . . . , λn) tel que λ1f1 + · · ·+ λnfn = 0.
En particulier :

� ϕF est surjective si et seulement si la famille F engendre G.

� ϕF est injective si et seulement la famille F est libre.

� ϕF est un isomorphisme si et seulement si la famille F est une base de G.

On obtient ainsi la propriété suivante :

Propriété 5 Deux espaces E et F de dimensions finies sont isomorphes si et seulement
si ils ont la même dimension.

Enfin, concernant les espaces L(E,F ) :
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Propriété 6 Si E et F sont de dimension finie alors l’espace L(E,F ) est de dimension
finie et même :

dim(L(E,F )) = dim(E)× dim(F )

dim(L(E)) = dim(E)2

3.3 Théorème du rang

Soit f : E → F une application linéaire.

Définition 3 On pose :
rg(f) = dim(Im(f))

rg(f) qui est un entier ou +∞ est le rang de l’application linéaire E. Il est fini si E ou
F sont de dimensions finies.

Première remarque :

Propriété 7 Si u ∈ L(E,F ) et v ∈ L(F,G) sont des application linéaires alors :

rg(v ◦ u) ≤ min(rg(u), rg(v))

On obtient ensuite l’importante formule du rang.

Théorème 8 (Théorème du rang) Soit f : E → F une application linéaire avec E de
dimension finie alors :

dim(E) = dim(Ker(f)) + dim(Im(f)) = dim(Ker(f)) + rg(f)

3.4 Quelques applications

Première conséquence importante concernant les isomorphismes et les automorphismes :

Propriété 8 Soit f : E → F une application linéaire avec E de dimension finie. f est
un isomorphisme entre E et F si et seulement si dim(E) = dim(F ) et Ker(f) = {0}.
Autrement dit :

Si

{
dim(E) = dim(F )

Ker(f) = {0}
alors : f ∈ Isom(E,F )

Soit f ∈ L(E) un endomorphisme avec E de dimension finie.

f est un automorphisme de E si et seulement si Ker(f) = {0}.

Autrement dit :

Si Ker(f) = {0} alors f est un automosphisme.

f est un automorphisme de E si et seulement si rg(f) = dim(E). Autrement dit :

Si Im(f) = E alors f est un automosphisme.
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Concernant l’inversion :

Propriété 9 Soit f ∈ L(E) g ∈ L(E) des endomorphismes avec E de dimension finie.
On a :

Si f ◦ g = IdE alors g ◦ f = IdE

Dans ce cas, f et g sont des automorphismes de E. Plus généralement, si f ◦ g ou g ◦ f
est un automorphisme de E alors f et g sont des automorphismes de E.

4 Hyperplans et formes linéaires

On considère E un espace vectoriel sur K.

Définition 4 Une forme linéaire sur E est une application linéaire u définie sur E à
valeurs dans K.

Les formes linéaires sur E forment un espace vectoriel de dimension (éventuellement
infinie) égale à celle de E.

On a des exemples ”canoniques” :

Si E est de dimension finie et B = (e1, . . . , en) est une base de E, alors pour tout v ∈ E,
on peut écrire :

v = λ1(v).e1 + · · ·+ λn(v).en

λ1(v), . . . , λn(v) étant des scalaires.

Les applications λ1, . . . , λn sont des formes linéaires sur E dite formes linéaires coor-
données sur E. Elles forment une base de l’espace des formes linéaires sur E.

Définition 5 Si H est un sous espace de E et s’il existe u une forme linéaire non nulle
sur E telle que H = Ker(u) alors on dit que H est un hyperplan de E.

On a des caractérisations des hyperplans de E :

Propriété 10 Si H est un sous espace vectoriel de E alors H est un hyperplan de E si et
seulement si :

� Il existe une droite vectorielle D telle que E = D ⊕H ou,

� Si dim(E) < ∞ : dim(H) = dim(E)− 1.

Notons du coup que les hyperplans de R2 sont les droites vectorielles de R2 et les hyper-
plans de R3 sont les plans vectoriels de R3.

En fait, siH est un hyperplan de E toute droite non incluse dans E est un supplémentaire
de H.

On obtient du coup :
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Propriété 11 Si u et v sont 2 formes linéaires sur E telles que ker(u) = ker(v) alors u
et v sont proportionnelles.

Si H est un hyperplan de E et si H = ker(u) avec u forme linéaire sur E, alors on dit
que la relation u(v) = 0 qui caractérise donc les vecteurs de H est une équation de H.

On montre par récurrence que l’intersection de m hyperplans d’un espace E de dimen-
sion n est un sous espace de E de dimension au moins n−m.

Réciproquement :

Théorème 9 Si E est un espace de dimension finie n, tout sous espace F de E de dimen-
sion n−m est l’intersection de m hyperplans de E.

Si on se donne des équations respectives de ces m hyperplans : u1(v) = 0 , ... , um(v) = 0
avec u1, ... , um des formes linéaires sur E, celles ci sont indépendantes dans leur espace.
On dit qu’on a défini F par m équations indépendantes.

Ici l’indépendance tient au fait que dans ce cas les formes linéaires u1, ...,um forment une
famille libre dans l’espace des formes linéaires sur E.

Dans le cas de R3, toute droite vectorielle peut ainsi être définie par 2 équation linéaires
indépendantes.

5 Espaces affines

5.1 Notion d’espace affine

On considère un espace vectoriel E. C’est un espace de vecteurs dont le vecteur nul
−→
0 .

C’est aussi un espace affine si on le considère comme un espace de points dont le point
O.

Ici on distinguera donc les points (lettres capitales) des vecteurs.

A tout couple A, B de points est associé par différence un vecteur :
−→
AB avec les règles

classiques entre autres : −→
AB +

−−→
BC =

−→
AC

−→
AA =

−→
0

Définition 6 Si −→u est un vecteur de E, on lui associe une bijection de E espace affine :{
E → E

A → A+−→u = B avec
−→
AB = −→u

cette application est la translation de vecteur −→u
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On sera donc autorisé à utiliser la notation : B − A =
−→
AB.

Définition 7 On considère F une partie de E, on dit que F est un sous espace affine

de E quand il existe un sous espace vectoriel
−→
F de E et un point A de E tel que

F = A+
−→
F = {A+−→u /−→u ∈

−→
F }

On a alors
−→
F = {

−→
AB ∈ E/B ∈ F}, et pour tout B ∈ F : A+

−→
F = B +

−→
F .

Le sous espace
−→
F est appelé espace directeur ou direction de l’espace affine F .

L’intersection de plusieurs sous espaces affines de E, si elle est non vide, est un sous
espace affine dirigé par un sous espace de l’intersection de leurs espaces directeurs.

Les sous espaces affines de R2 sont les points (dirigés par le vecteur nul) les droites affines
de R2 (dirigées par les droites vectorielles) et R2 (dirigé par lui même !).

Les sous espaces affines de R3 sont les points (dirigés par le vecteur nul), les droites
affines (dirigées par les droites vectorielles), les plans (dirigées par les plans vectoriels) et
R3 (dirigé par lui même !).

Un hyperplan affine H est un sous espace affine de E dont l’espace directeur est un
hyperplan de E. Il existe une forme linéaire non nulle sur E et un scalaire c tel que :

H = {A ∈ E/u(A) = c}

La relation u(A) = c est une équation affine de H. Deux équations affines d’un même
hyperplan affine sont proportionnelles.

5.2 Repère affine et coordonnées

On considère ici E de dimension finie et on en fixe une base B = (−→u1, . . . ,
−→un). On fixe

aussi un point O de E comme espace affine. On dit qu’on s’est alors donné un repère
affine R = (O,B) de E.
Pour tout point M de E, il existe des scalaires (uniques) λ1, ... , λn tels que :

M = O + λ1
−→u1 + · · ·+ λn

−→un

C’est à dire : −−→
OM = λ1

−→u1 + · · ·+ λn
−→un

On dit dans ce cas que M a pour coordonnées affines (λ1, . . . , λn) et on note (parfois)
MR = (λ1, . . . , λn).
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6 Problèmes linéaires

Définition 8 Soit E et F 2 espaces vectoriels, f une application linéaire de E dans F :
f ∈ L(E,F ) et b un vecteur de F .

Une équation linéaire ou problème linéaire est un problème du type :

(e) : f(v) = b

d’inconnue v ∈ E.
Il lui est associée l’équation linéaire homogène :

(e0) : f(v) = 0

d’inconnue v ∈ E.

Dans les conditions précédentes :

Théorème 10 L’équation linéaire homogène (e0) a toujours au moins une solution :
v = 0. L’ensemble de ses solutions est le sous espace vectoriel Ker(f) de E.

L’équation (e) : f(v) = b a des solutions si et seulement si b ∈ ℑ(f). Si c’est le cas on
considère v1 une solution particulière : f(v1) = b. L’ensemble des solutions est alors :

v1 +Ker(f) = {v1 + v0/f(v0) = 0}

C’est un sous espace affine de E dirigé par Ker(f).
Autrement dit, la solution générale de l’équation linéaire est obtenue en ajoutant à une

solution particulière la solution générale de l’équation homogène.

Savoirs et savoirs faire indispensables

Savoirs

Définition d’application linéaire, d’isomorphisme, automorphisme. Image, Noyau.
Définition d’une famille libre, génératrice, d’une base.
Définition de projection et d’une symétrie, caractérisation.
Définition et théorème du rang d’une application linéaire.

Savoir-faire

Vérifier qu’une application est linéaire, est un isomorphisme.
Vérifier qu’une famille est libre, génératrice, est une base.
Calculer une image, un noyau, vérifier qu’une application est un isomorphisme à l’aide

du théorème du rang, calculer sa réciproque.
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