
[Compléments] Pression cinétique

Dans ces compléments, nous démontrons l’équation d’état du gaz parfait par une approche statistique utilisant la théorie
cinétique des gaz.

Soit un gaz parfait constitué de N particules ponctuelles de masse m dans un volume V donc de densité n∗ =
N

V
.

Les chocs de ces particules sur les parois sont à l’origine de la force pressante. Pour exprimer cette force, on utilise la troisième
loi de Newton : on exprime la force subie par les particules lors de leur rebond, qui est son opposée.

Modèle simple
On considère que toutes les particules vont à la même vitesse v, et se déplacent uniquement selon trois directions perpendi-
culaires. e⃗x, e⃗y, e⃗z. Il y a donc 6 possibilités équiprobables pour le vecteur vitesse d’une particule : ±ve⃗x, ±ve⃗y, ±ve⃗z.

dS e⃗x

dℓ

Soit une paroi de surface élémentaire dS orientée par la normale extérieure e⃗x. On s’in-
téresse au système constitué des particules qui frappent cette paroi pendant une durée
infinitésimale dt (entre l’instant t et l’instant t+ dt).
Ces particules sont celles qui ont pour vecteur vitesse +ve⃗x et qui sont présentes à l’instant
t dans un volume cylindrique de base dS et de hauteur égale à la distance parcourue par
les particules pendant dt soit dℓ = vdt. En effet toute particule située à une distance plus
faible (et avec le vecteur vitesse dirigé vers la paroi) va atteindre la paroi pendant dt.
L’hypothèse principale de la méthode consiste à affirmer que, en moyenne sur le temps,
les propriétés physiques dans le volume infinitésimal dV = dSdℓ reproduisent
les propriétés statistiques du gaz complet à l’équilibre :

— la densité de particules dans ce volume est en moyenne égale à la densité du gaz, soit dN

dV
= n∗ où dN est le nombre

de particules dans le volume cylindrique ;
— une portion 1/6 de ces particules a en moyenne un vecteur vitesse v⃗ = ve⃗x.

Notre système contient donc en moyenne un nombre de particules : dN ′ =
1

6
dN =

1

6
n∗vdSdt.

La quantité de mouvement de ce système à l’instant t est :
−→
dp(t) = dN ′ ×mv⃗ =

1

6
n∗mv2 dSdt e⃗x.

Après rebond, toutes les particules repartent en sens opposé, donc la quantité de mouvement à l’instant t+dt est simplement
retournée :

−→
dp(t+ dt) = −

−→
dp(t).

D’après la loi de la quantité de mouvement, la force exercée sur le système vaut :

−→
dF paroi/syst =

d(
−→
dp)

dt
=

−→
dp(t+ dt)−

−→
dp(t)

dt
= −2

−→
dp

dt
= −1

3
n∗mv2 dS e⃗x

D’après la troisième loi de Newton, cette force est la force opposée à la force exercée par le système sur la paroi, qui est la
force pressante :

−→
dF p = −

−→
dF paroi/syst =

1

3
n∗mv2dS e⃗x = pcin dS e⃗x où la pression cinétique a pour expression :

pcin =
1

3
n∗mv2

Modèle plus rigoureux
En réalité le vecteur vitesse des particules a une orientation quelconque et une norme quelconque. La seule hypothèse que
l’on peut faire est l’isotropie du mouvement des particules, ce qui revient à dire qu’au sein du gaz, on a la même distribution
pour les 3 composantes du vecteur vitesse : les densités de probablité P(vx), P(vy) et P(vz) sont des fonctions identiques.

dS e⃗x

dℓ

Le reste de la démontration procède exactement comme pour le modèle simple. On consi-
dère une surface de paroi d’aire dS et de normale extérieure e⃗x. On étudie le système
constitué des particules rencontrant cette surface entre t et t + dt et dont la vitesse v⃗ a
des composantes comprises entre vx et vx + dvx sur l’axe e⃗x (avec vx > 0), entre vy et
vy + dvy sur l’axe e⃗y et entre vz et vz + dvz sur l’axe e⃗z.
Ces particules se trouvent à l’instant dans un volume cylindrique oblique de base dS,
d’axe celui du vecteur vitesse et de hauteur dℓ = vxdt (qui est la distance parcourue dans
la direction e⃗x).
Selon notre hypothèse de la moyenne temporelle :

— le nombre de particules dN dans ce volume dV = dSdℓ vérifie en moyenne dN

dV
= n∗ ;

— la proportion de ces particules appartenant au système est en moyenne égale à
P(vx)P(vy)P(vz)dvxdvydvz.
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Le nombre de particules dans le système est donc : dN ′ =
Nvx
V

P(vx)P(vy)P(vz)dvxdvydvzdSdt.

Sa quantité de mouvement à l’instant t est :
−→
dp(t) = dN ′m(vxe⃗x + vy e⃗y + vz e⃗z).

Après rebond, les particules conservent leurs composantes vy et vz, mais la composante vx s’inverse :

−→
dp(t+ dt) = dN ′m(−vxe⃗x + vy e⃗y + vz e⃗z)

D’après la loi de la quantité de mouvement, la force exercée sur le système vaut :

−→
dF paroi/syst =

−→
dp(t+ dt)−

−→
dp(t)

dt
= −2n∗mv2xP(vx)P(vy)P(vz)dvxdvydvzdS e⃗x

D’après la troisième loi de Newton, cette force est la force opposée à la force exercée par le système sur la paroi. En sommant
sur sur toutes les valeurs de vitesse possibles, on obtient la force pressante :

−→
dF p = −

∫ −→
dF paroi/syst = 2n∗m

∫ ∞

0

v2xP(vx)dvx

∫ ∞

−∞
P(vy)dvy

∫ ∞

−∞
P(vz)dvz dS e⃗x

Par définition d’une densité de probablité,
∫ ∞

−∞
P(vy)dvy =

∫ ∞

−∞
P(vz)dvz = 1.

Par symétrie de la distribution de vitesse,
∫ ∞

0

v2xP(vx)dvx =
1

2

∫ ∞

−∞
v2xP(vx)dvx =

1

2
< v2x >.

De plus, par isotropie on a < v2x >=< v2y >=< v2z > donc < v2 >=< v2x > + < v2y > + < v2z >= 3 < v2x >.

On en déduit que la force pressante s’écrit :
−→
dF p =

1

3
n∗m < v2 > dS e⃗x = pcin dS e⃗x où la pression cinétique a pour

expression :

pcin =
1

3
n∗m < v2 >

C’est le même résultat que précédemment, avec < v2 > à la place de v2.

Équation d’état des gaz parfaits

Par conséquent pcin =
2

3
n∗ < Ec > avec Ec l’énergie cinétique de translation d’une particule.

En définissant la température cinétique Tcin par < Ec >=
3

2
kBTcin, il vient : pcin = n∗kBTcin.

Or n∗ =
N

V
=

nNA

V
où n est la quantité de matière de gaz. On obtient alors :

pcinV = nNAkBTcin

Cette équation est identique à l’équation d’état des gaz parfaits, en identifiant pression cinétique et pression du gaz, tempé-
rature cinétique et température thermodynamique, et en définissant la constante de gaz parfaits comme R = NAkB .
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