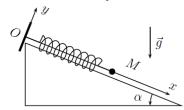
TD Lois de Newton

Exercice 1 : Ressort (106, 107)

On considère un ressort de longueur à vide l_0 et de raideur k, dont les extrémités sont reliées à un point fixe 0 et un point matériel M de masse m. On néglige tout frottement. Soit un axe 0x sur le plan incliné.



- 1. Déterminer l_{eq} , la longueur du ressort à l'équilibre en fonction de l_0 , m, g, k et α .
- 2. À partir de la position d'équilibre M est déplacé d'une distance $d < l_{eq}$ comptée algébriquement sur Ox et lâché sans vitesse initiale à t = 0. Établir, pour $t \ge 0$, l'équation horaire du mouvement de M en fonction de d, k, m et l_{eq} .

Exercice 2: Chute dans une piscine (109, 110, 111)

Un baigneur de masse m=80~kg saute d'un plongeoir situé à une hauteur h=10~m au dessus de la surface de l'eau. On considère qu'il se laisse chuter verticalement sans vitesse initiale et qu'il est uniquement soumis à la force de pesanteur durant la chute. On note 0z l'axe vertical descendant du repère d'espace $R(0,\overline{u_z})$, 0 étant le point de départ du saut. On prendra $g=10~m.s^{-2}$.

1. Déterminer l'équation horaire du mouvement z(t). En déduire les expressions littérales de la vitesse d'entrée v_e telle que $\overrightarrow{v_e} = v_e \overrightarrow{u_z}$ du baigneur dans l'eau, et de la durée t_c de la chute. Faire les applications numériques.

Quand le baigneur est dans l'eau, il ne fait aucun mouvement et subit en plus de la pesanteur :

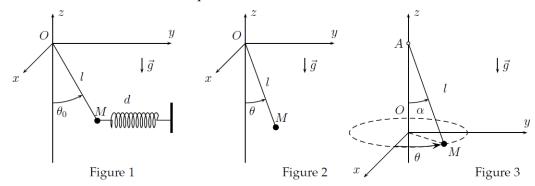
- Une force de frottement fluide $\vec{f_f} = -k\vec{v}$ (\vec{v} étant sa vitesse et $k = 250 \ kg.\ s^{-1}$)
- La poussée d'Archimède $\vec{\Pi} = -\frac{m}{d_h} \vec{g}$ ($d_h = 0.90$ est la densité du corps humain)
- 2. Établir l'équation différentielle vérifier par v_z la composante de la vitesse sur l'axe Oz sous la forme : $v_z + \frac{v_z}{\tau} = \beta g$. Identifier τ et β en fonction des données du texte. Quelles sont leurs unités respectives ?
- 3. Résoudre l'équation en prenant comme nouvelle origine des temps $t = t_c$ en gardant les constantes τ et β .
- 4. Le baigneur atteint une vitesse limite v_L , déterminer son expression littérale en fonction de g, τ et β puis en fonction de m, g, k et d_h . Faire l'application numérique et commenter le signe de v_L .
- 5. Exprimer la vitesse v_z en fonction de v_e , v_L , τ et t. Déterminer littéralement puis numériquement à quelle date t_1 le baigneur commence à remonter.
- 6. En prenant comme nouvelle origine de l'axe Oz la surface de l'eau, exprimer z(t) en fonction de τ , v_e et v_L . En déduire la profondeur maximale z_{max} pouvant être atteinte.

Exercice 3: Autour du pendule (106, 107, 113, 114)

On considère un pendule simple constitué d'un fil inextensible, de longueur l, de masse négligeable, fixé en O et auquel on a accroché une petite bille de masse m assimilable à un point matériel M. O est fixe dans le référentiel du laboratoire R galiléen.

Étude statique : dans un premier temps, on accroche à M un ressort horizontal de masse négligeable, de constante de raideur k et de longueur à vide d_0 . À l'équilibre dans R, la longueur du ressort prend la valeur d quand le fil s'écarte de l'angle θ_0 par rapport à la verticale tout en restant dans le plan Oyz (fig 1).

1. En déduire l'expression de *m* en fonction des autres données.



Première étude dynamique : à l'instant initial, le ressort se détache de M (fig 2).

2. Établir l'équation différentielle reliant θ à ses dérivées temporelles (on néglige tout frottement).

On se place dans le cas des petites oscillations.

On a alors $\sin(\theta) \approx \theta$ et $\cos(\theta) \approx 1 - \frac{\theta^2}{2}$

- 3. En déduire $\theta(t)$.
- 4. Exprimer la tension du fil en fonction du temps.

Autre type de mouvement : le fil est accroché en A et le point matériel M, tourne maintenant dans le plan xOy avec une vitesse angulaire constante $\omega = \dot{\theta}$ autour de l'axe OA (fig 3). $\alpha = Cst$ étant l'angle que forme AM avec la verticale.

5. Calculer la tension du fil T puis l'angle α en fonction de m, g, l et ω , montrer que ω doit respecter une certaine condition.

Exercice 4: Masses liées en rotation (103, 104, 105)

On s'intéresse à deux points matériels M_1 et M_2 de même masse m fixés par un fil inextensible de masse nulle et de longueur L. Le point M_1 est fixé au milieu du fil et le point M_1 est fixé à l'une des extrémités de ce fil. L'ensemble tourne sans frottement dans un plan horizontal, avec la vitesse angulaire ω autour du point fixe O constitué par l'autre extrémité du fil.

- 1. Calculer les tensions des deux brins du fil aux points M_1 et M_2 . À la date t = 0, le fil casse entre O et M_1 .
 - 2. Justifier que le référentiel lié au centre de gravité est galiléen.
 - 3. Décrire le mouvement ultérieur du système constitué par les deux points.

Résolution de problème

À l'extrémité inférieure d'un ressort vertical est suspendu un plateau sur lequel est placé un cube. Le plateau est lâché sans vitesse initiale après l'avoir descendu d'une altitude *A* par rapport à sa position d'équilibre. Le cube décolle-t-il du plateau ?

Oral de concours : CCP PC 2017

Un homme de masse m saute sans parachute d'une altitude z=7610~m et se réceptionne dans un filet. Il ne peut subir une décélération de plus de 10~g sans risquer de lésions.

A quelle altitude minimale h doit-on placer le filet pour que l'homme ne se blesse pas, sachant que sa vitesse à l'impact sur celui-ci sera de $v_0 = 200 \ km. \ h^{-1}$?

Expliquer pourquoi, dans une chute libre, on observe une vitesse limite atteint par l'objet.