Sol A1.

Ensembles de nombres

Solution A1.5

Étant donnés $x, y \in \mathbb{R}_+^*$ tels que $x \leq y$, on définit $A = \frac{x+y}{2}$, $G = \sqrt{xy}$ et $H = \frac{1}{\frac{1}{2}\left(\frac{1}{x} + \frac{1}{y}\right)}$.

- $x \leqslant y \text{ donc } x + y \leqslant 2y, \text{ donc } A \leqslant y.$
- $A G = x + y \sqrt{xy} = (\sqrt{x} \sqrt{y})^2 \geqslant 0 \text{ donc } A \geqslant G$.
- $\bullet \ \frac{1}{H} = \frac{1}{2} \frac{x+y}{xy} \ \text{donc} \ \frac{1}{H} \frac{1}{G} = \frac{1}{2} \frac{x+y-2\sqrt{xy}}{xy} = \frac{(\sqrt{x}-\sqrt{y})^2}{2xy} \geqslant 0. \ \text{Donc} \ \frac{1}{H} \geqslant \frac{1}{G}, \ \text{donc} \ H \leqslant g.$

Remarque. On peut aussi appliquer l'inégalité précédente avec $\frac{1}{x}$ et $\frac{1}{u}$, qui vérifient que $\frac{1}{u} \leqslant \frac{1}{x}$.

•
$$\frac{1}{x} \geqslant \frac{1}{y} \operatorname{donc} \frac{1}{x} + \frac{1}{y} \leqslant \frac{2}{x}$$
. Donc $\frac{1}{H} \leqslant \frac{1}{x}$, i.e. $H \geqslant x$.

On a montré (de droite à gauche) les inégalités constituant la propriété :

$$x \leqslant H \leqslant G \leqslant A \leqslant y$$
.

Solution A1.11

1. Soit $x \in \mathbb{R}$. D'une part, $2x - 1 < |2x| \leq 2x$. D'autre part, $x-1 < |x| \leqslant x$ donc $-2x \leqslant -2|x| < -2x + 2$

En sommant ces deux encadrements:

$$-1 < \lfloor 2x \rfloor - 2\lfloor x \rfloor < 2.$$

Or |2x| - 2|x| est un entier, donc $|2x| - 2|x| \in \{0, 1\}$.

2. On note $x = |x| + \{x\}$, où $\{x\}$ désigne la partie fractionnaire de x, à savoir $x - |x| \in [0,1]$.

1er cas: $\{x\} \in \left[0, \frac{1}{2}\right[$. Dans ce cas, $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + \frac{1}{2}$.

On a alors $2\lfloor x \rfloor \leqslant 2x < 2\lfloor x \rfloor + 1$, d'où par définition $\lfloor 2x \rfloor = 2\lfloor x \rfloor$.

Par ailleurs $\lfloor x \rfloor + \frac{1}{2} \leqslant x + \frac{1}{2} < \lfloor x \rfloor + 1$, donc a fortior $\lfloor x \rfloor \leqslant x + \frac{1}{2} < \lfloor x \rfloor + 1$ et donc $\left\lfloor x + \frac{1}{2} \right\rfloor = \lfloor x \rfloor$.

Finalement, on a bien $\lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor = 2 \lfloor x \rfloor = \lfloor 2x \rfloor$.

 2^e cas: $\{x\} \in \left[\frac{1}{2}, 1\right[$. Dans ce cas, $\lfloor x \rfloor + \frac{1}{2} \leqslant x < \lfloor x \rfloor + 1$.

On a alors $2\lfloor x \rfloor + 1 \leqslant 2x < 2\lfloor x \rfloor + 2$, d'où par définition $\lfloor 2x \rfloor = 2\lfloor x \rfloor + 1$. Par ailleurs $\lfloor x \rfloor + 1 \leqslant x + \frac{1}{2} < \lfloor x \rfloor + \frac{3}{2}$, donc a fortiori $\lfloor x \rfloor + 1 \leqslant x + \frac{1}{2} < \lfloor x \rfloor + 2$ et donc $\left|x + \frac{1}{2}\right| = \left\lfloor x \right\rfloor + 1.$

1

Finalement, on a bien $\lfloor x \rfloor + \left \lfloor x + \frac{1}{2} \right \rfloor = 2 \lfloor x \rfloor + 1 = \lfloor 2x \rfloor$.