D5. Convexité

Question D5.1 (D5'Q1)

Enoncer et démontrer une caractérisation de la convexité par la croissance des pentes.

Question D5.2 (D5'Q2)

Énoncer et démontrer une caractérisation de la convexité pour les fonctions dérivables.

Exercice **D5.3** (D5'E1)

Soit $f:[a,b]\to\mathbb{R}$ une fonction de classe \mathcal{C}^1 et convexe. Montrer que

$$(b-a)f\left(\frac{a+b}{2}\right) \leqslant \int_a^b f(t) dt \leqslant (b-a)\frac{f(a)+f(b)}{2}.$$

Exercice **D5.4** (D5'E2)

Soit $f:[a,b]\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 telle que f(a)=f(b)=0.

- 1. Justifier l'existence de $M = \sup\{|f''(x)|, x \in [a, b]\}.$
- 2. Montrer que

$$\forall x \in [a, b], |f(x)| \leqslant M \frac{(x - a)(b - x)}{2}$$

Exercice **D5.5** (*D5'E3*)

Soit $p, q \in \mathbb{R}_+^*$ tels que $\frac{1}{n} + \frac{1}{q} = 1$.

- 1. Montrer que $\forall a, b \in \mathbb{R}_+^*$, $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$.
- 2. Montrer que $\forall a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}_+^*$,

$$\sum_{i=1}^{n} a_{i} b_{i} \leqslant \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1/q}$$

Exercice D5.6 ()

Soit $x \in [-1, 1]$ et $\lambda \in \mathbb{R}$. Montrer que $e^{\lambda x} \leq \operatorname{ch}(\lambda) + x \operatorname{ch}(\lambda)$. Étudier le cas d'égalité.

Exercice D5.7 ()

Soit x > 1. Montrer que $x^n - 1 \ge n \left(x^{\frac{n+1}{2}} - x^{\frac{n-1}{2}} \right)$.

Exercice D5.8 ()

Soit $f: \mathbb{R} \to \mathbb{R}$ concave et $a \in \mathbb{R}$.

- 1. Montrer que si f admet un maximum local en a, alors elle admet un maximum global en a.
- 2. Que peut-on dire de f si elle admet un minimum local en a?

Exercice D5.9 ()

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe dérivable. Montrer que si f admet une limite finie en $+\infty$, alors f est décroissante. Montrer alors que $f'(x) \xrightarrow[x \to +\infty]{} 0$.

Exercice D5.10 () Soit $f: x \mapsto x^6 + x^5 + x^2 - x + 1$.

- 1. Étudier la convexité et les variations de f.
- 2. Déterminer l'équation de la tangente en 0 à la courbe représentative de f.
- 3. Déterminer $n \in \mathbb{Z}$ tel que le minimum de f soit atteint en $a \in [n, n+1]$.
- 4. Montrer que f ne s'annule pas sur \mathbb{R} .