Problème 1

On définit la fonction **cotangente** par cotan : $\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$ \longrightarrow \mathbb{R} . L'objectif du problème $x \longmapsto \frac{\cos(x)}{\sin(x)}$

est de calculer pour $n \in \mathbb{N}$ le produit $S_n = \prod_{k=1}^n \cot \left(\frac{k\pi}{n+1}\right)$.

On considère la suite de polynômes de $\mathbb{R}[X]$, $(P_n)_{n\geq 0}$, définie par :

$$\begin{cases} P_0 = 1 \\ \forall n \in \mathbb{N}, P_{n+1} = 2XP_n - \frac{1}{n+1}(1+X^2)P'_n \quad (\bigstar) \end{cases}$$

- 1. Soit $n \in \mathbb{N}$.
 - (a) Calculer P_1 et P_2 .
 - (b) Montrer que : $deg(P_n) \le n$. On note a_n le coefficient de X^n dans P_n .
 - (c) Montrer que : $a_{n+1} = \frac{n+2}{n+1}a_n$. En déduire que $a_n = n+1$. Donner le degré de P_n .
- 2. Montrer que : $\forall n \in \mathbb{N}, P_n(-X) = (-1)^n P_n(X)$. On pourra procéder par récurrence. Que dire de la parité du polynôme P_n ?
- 3. Soit $n \in \mathbb{N}$.
 - (a) Montrer que : $\forall n \in \mathbb{N}, P'_{n+1} = (n+2)P_n$.
 - (b) Montrer que : $\forall n \in \mathbb{N}, P_{2n+1}(0) = 0 \text{ et } P_{2n}(0) = (-1)^n.$
 - (c) En déduire que :

$$\forall x \in \mathbb{R}, P_{n+1}(x) = P_{n+1}(0) + (n+2) \int_0^x P_n(t) dt.$$

Calculer, grâce à cette formule, P_3 et P_4 .

- 4. (a) Montrer que : $\forall n \in \mathbb{N}, P_{n+2} 2XP_{n+1} + (1+X^2)P_n = 0.$
 - (b) Soit $x \in \mathbb{R}$, $n \in \mathbb{N}$ et $u_n = P_n(x)$. À l'aide de la relation trouvée à la question précédente, exprimer u_n en fonction de n et x. On pourra reconnaître une suite récurrente linéaire d'ordre 2.
 - (c) En déduire que :

$$\forall n \in \mathbb{N}, P_n = \frac{1}{2i} \left[(X+i)^{n+1} - (X-i)^{n+1} \right]$$

- 5. (a) Soit $n \in \mathbb{N}$, montrer que le polynôme P_n admet n racines réelles que l'on exprimera à l'aide de la fonction cotan.
 - (b) Factoriser le polynôme P_n .
 - (c) Calculer le produit des racines de P_n . En déduire la valeur de S_n selon $n \in \mathbb{N}$.

Problème 1 | Corrigé

1. (a) On a $P_1 = 2XP_0 - (1+X^2)P_0'$, étant donné que $P_0 = 1$, on a :

$$P_1 = 2X.$$

Et $P_2 = 2XP_1 - \frac{1}{2}(1+X^2)P_1' = 4X^2 - (1+X^2)$ donc :

$$P_2 = 3X^2 - 1$$

(b) Démontrons cela par récurrence sur $n \in \mathbb{N}$, on pose :

$$\mathcal{H}_n: \deg(P_n) \leq n$$

▶ Initialisation : $deg(P_0) = 0 \le 0$.

▶ Hérédité : on suppose $\deg(P_n) \leq n$ pour un entier naturel n fixé. On a $\deg(P'_n) \leq n-1$ donc $\deg((1+X^2)P_n') \le 2+n-1=n+1$, d'autre part $\deg(XP_n) \le n+1$. Par conséquent $\deg(P_{n+1}) \le n+1$ n+1, ce qui achève la récurrence.

$$\forall n \in \mathbb{N}, \ \deg(P_n) \le n$$

(c) Soit $n \in \mathbb{N}$. Le monôme en X^n de P_n est $a_n X^n$, donc le monôme en X^{n+1} dans $2XP_n$ est $2a_n X^{n+1}$ et le terme en X^{n+1} dans $-\frac{1}{n+1}(1+X^2)P_n'$ est $-\frac{1}{n+1}na_n$. En identifiant les coefficients de degré n+1 dans la relation (\bigstar) , on a :

$$a_{n+1} = 2a_n - \frac{na_n}{n+1}$$

$$a_{n+1} = \frac{n+2}{n+1}a_n.$$

Montrons par récurrence sur $n \in \mathbb{N}$:

$$\mathcal{H}_n: a_n = n+1$$

▶ Initialisation : $a_0 = 1$ car $P_0 = 1$.

▶ **Hérédité**: on suppose que $a_n = n+1$ pour un certain entier naturel n. On a $a_{n+1} = \frac{n+2}{n+1}a_n =$ n+2, ce qui achève la récurrence.

$$\forall n \in \mathbb{N}, \ a_n = n+1$$

Soit $n \in \mathbb{N}$, le polynôme P_n est de degré inférieur ou égal à n et le coefficient devant X^n est non nul:

$$\forall n \in \mathbb{N}, \ \deg(P_n) = n$$
.

2. Démontrons ceci par récurrence sur $n \in \mathbb{N}$, on pose :

$$\mathcal{H}_n: P_n(-X) = (-1)^n P_n(X)$$

▶ Initialisation : $P_0(-X) = 1 = (-1)^0 P_0(X)$, ce qui démontre que l'égalité est vraie pour n = 0.

▶ **Hérédité** : supposons que pour un entier $n \in \mathbb{N}$, on a : $P_n(-X) = (-1)^n P_n(X)$. On dérive cette relation : $-P'_n(-X) = (-1)^n P'_n(X)$, en utilisant la relation (\bigstar) :

$$P_{n+1}(-X) = 2(-X)P_n(-X) - \frac{1}{n+1}(1+(-X)^2)P'_n(-X)$$

$$= (-1)^{n+1}2XP_n(X) - \frac{1}{n+1}(1+X^2)(-1)^{n+1}P'_n(X)$$

$$= (-1)^{n+1}\left(2XP_n(X) - \frac{1}{n+1}(1+X^2)P'_n(X)\right)$$

$$= (-1)^{n+1}P_{n+1}(X)$$

Ce qui achève la récurrence.

$$\forall n \in \mathbb{N}, P_n(-X) = (-1)^n P_n(X)$$

Le polynôme P_n a la même parité que l'entier naturel n.

3. (a) Démontrons la formule proposée par récurrence sur $n \in \mathbb{N}$.

$$\mathcal{H}_n: P'_{n+1} = (n+2)P_n$$

- ▶ Initialisation : $P'_1 = 2 = (0+2)P_0$, ce qui démontre que \mathcal{H}_0 est vraie.
- ▶ **Hérédité** : supposons que pour un certain entier naturel n, on a : $P'_{n+1} = (n+2)P_n$ alors :

$$P'_{n+2} = \left(2XP_{n+1} - \frac{1}{n+2}(1+X^2)P'_{n+1}\right)'$$

$$= \left(2XP_{n+1} - \frac{1}{n+2}(1+X^2)(n+2)P_n\right)' \quad \text{avec } \mathcal{H}_n$$

$$= 2P_{n+1} + 2XP'_{n+1} - 2XP_n - (1+X^2)P'_n$$

$$= 2P_{n+1} + 2X(n+2)P_n - 2XP_n - (1+X^2)P'_n \quad \text{avec } \mathcal{H}_n$$

$$= 2P_{n+1} + (n+1)\left(2XP_n - \frac{1}{n+1}(1+X^2)P'_n\right)$$

$$= (n+3)P_{n+1}$$

Ce qui achève la récurrence et montre que :

$$\forall n \in \mathbb{N}, P'_{n+1} = (n+2)P_n$$

(b) D'après la relation (\bigstar) définissant les polynômes $(P_n)_{n\geq 0}$, on a $P_{n+2}(0) = -\frac{1}{n+2}P'_{n+1}(0)$ et d'autre part, d'après la question précédente, $P'_{n+1}(0) = (n+2)P(0)$. Ce qui nous donne : $P_{n+2}(0) = -P_n(0)$ (\heartsuit). Grâce à cette relation, nous allons pouvoir démontrer par récurrence sur $n \in \mathbb{N}$:

$$\mathcal{H}_n: P_{2n+1}(0) = 0 \text{ et } P_{2n}(0) = (-1)^n$$

- ▶ Initialisation : $P_1(0) = 0$ et $P_0(0) = 1$ au vu des expressions de P_0 et P_1 , ce qui démontre que \mathcal{H}_0 est vraie.
- ▶ **Hérédité** : supposons que $P_{2n+1}(0) = 0$ et $P_{2n}(0) = (-1)^n$ pour un certain entier $n \in \mathbb{N}$. À l'aide de la relation (\heartsuit) , on a :

$$P_{2n+3}(0) = -P_{2n+1}(0) = 0$$
 et $P_{2n+2}(0) = -P_{2n}(0) = -(-1)^n = (-1)^{n+1}$

Ce qui démontre \mathcal{H}_{n+1} et achève la récurrence.

$$\forall n \in \mathbb{N}, P_{2n+1}(0) = 0 \text{ et } P_{2n}(0) = (-1)^n$$

(c) Soit $x \in \mathbb{R}$. D'après la question 3.(a), pour tout $t \in \mathbb{R}$, $P'_{n+1}(t) = (n+2)P_n(t)$, on intègre cette relation entre 0 et x ce qui donne :

$$\int_0^x P'_{n+1}(t)dt = (n+2) \int_0^x P_n(t)dt$$

$$\Leftrightarrow P_{n+1}(x) - P_{n+1}(0) = (n+2) \int_0^x P_n(t)dt$$

$$\forall x \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, P_{n+1}(x) = P_{n+1}(0) + (n+2) \int_0^x P_n(t)dt \, dt$$

Pour tout $x \in \mathbb{R}$, on a:

$$P_3(x) = P_3(0) + 4 \int_0^x P_2(t)dt = 4 \int_0^x (3t^2 - 1)dt = 4[t^3 - t]_0^x = 4x^3 - 4x$$

On en déduit que :

$$P_3 = 4X^3 - 4X.$$

De même pour tout $x \in \mathbb{R}$:

$$P_4(x) = P_4(0) + 5 \int_0^x P_3(t)dt = 1 + 5 \int_0^x (4t^3 - 4t)dt = 1 + 5[t^4 - 2t^2]_0^x = 1 + 5x^4 - 10x^2$$

On en déduit que :

$$P_4 = 5X^4 - 10X^2 + 1.$$

4. (a) Là encore avec la relation trouvée à la question 3.(a) et la relation (\bigstar) , on a pour tout entier naturel n:

$$P_{n+2} = 2XP_{n+1} - \frac{1}{n+2}(1+X^2)P'_{n+1} = 2XP_{n+1} - \frac{1}{n+2}(1+X^2)(n+2)P_n$$

Ce qui démontre que :

$$\forall n \in \mathbb{N}, P_{n+2} - 2XP_{n+1} + (1+X^2)P_n = 0$$
.

(b) On a la relation valable pour tout $n \in \mathbb{N}$:

$$u_{n+2} - 2xu_{n+1} + (1+x^2)u_n = 0$$

Ceci démontre que (u_n) est une suite récurrente linéaire d'ordre 2, on considère l'équation caractéristique associée : $\lambda^2 - 2x\lambda + (1+x^2) = 0$. Les racines de cette équation sont $\lambda_1 = x+i$ et $\lambda_2 = x-i$ On en déduit qu'il existe deux complexes a et b que nous allons trouver grâce à $u_0 = 1$ et $u_1 = 2x$ tels que pour tout $n \in \mathbb{N}$:

$$u_n = a(\lambda_1)^n + b(\lambda_2)^n$$

Avec n = 0 et n = 1, on obtient :

$$\begin{cases} 1 = a+b \\ 2x = (a+b)x+i(a-b) \end{cases} \Leftrightarrow \begin{cases} 1 = a+b \\ -ix = a-b \end{cases} \Leftrightarrow \begin{cases} a = \frac{1-ix}{2} \\ b = \frac{1+ix}{2} \end{cases}$$

On obtient ainsi, pour tout $n \in \mathbb{N}$:

$$u_n = \frac{1 - ix}{2} (x + i)^n + \frac{1 + ix}{2} (x - i)^n$$

$$\forall n \in \mathbb{N}, u_n = \frac{1}{2i} \left[(x + i)^{n+1} - (x - i)^{n+1} \right].$$

(c) Soit $n \in \mathbb{N}$. En posant $R_n = P_n - \frac{1}{2i} \left[(X+i)^{n+1} - (X-i)^{n+1} \right]$, on a d'après la relation précédente tout réel x qui est racine de R_n donc le polynôme R_n est nul et par suite :

$$\forall n \in \mathbb{N}, P_n = \frac{1}{2i} \left[(X+i)^{n+1} - (X-i)^{n+1} \right].$$

5. (a) Soit $z \in \mathbb{C}$ et $n \in \mathbb{N}$. On a $P_n(z) = 0 \Leftrightarrow (z+i)^{n+1} = (z-i)^{n+1}$, comme i n'est pas solution, cette équation équivaut à $\left(\frac{z+i}{z-i}\right)^{n+1} = 1$, c'est-à-dire :

$$\exists k \in [0,n], \, \frac{z+i}{z-i} = e^{\frac{2ik\pi}{n+1}} \Leftrightarrow \exists k \in [1,n], \, z = i \frac{e^{\frac{2ik\pi}{n+1}} + 1}{e^{\frac{2ik\pi}{n+1}} - 1}$$

Ceci puisque l'entier k=0 ne correspond clairement pas à une solution. On a pour tout $k \in [\![1,n]\!]$ en utilisant la technique de l'angle moitié :

$$z = i \frac{e^{\frac{2ik\pi}{n+1}} + 1}{e^{\frac{2ik\pi}{n+1}} - 1} = i \frac{e^{\frac{ik\pi}{n+1}}}{e^{\frac{ik\pi}{n+1}}} \frac{\left(e^{\frac{ik\pi}{n+1}} + e^{-\frac{ik\pi}{n+1}}\right)}{\left(e^{\frac{ik\pi}{n+1}} - e^{-\frac{ik\pi}{n+1}}\right)} = \frac{\cos\left(\frac{k\pi}{n+1}\right)}{\sin\left(\frac{k\pi}{n+1}\right)} = \cot\left(\frac{k\pi}{n+1}\right)$$

La fonction cotan est strictement décroissante de $]0,\pi[$ dans \mathbb{R} ainsi les réels obtenus ci-dessus pour $k \in [\![1,n]\!]$ sont distincts.

Le polynôme P_n admet pour racines les réels :

$$z_k = \cot \left(\frac{k\pi}{n+1}\right) \text{ avec } k \in [1,n]$$

(b) Pour tout $n \in \mathbb{N}$, le polynôme P_n est de degré n et admet n racines réelles, il est donc scindé sur \mathbb{R} . Son coefficient dominant étant $a_n = n + 1$ d'après la question 1.(c), on a :

$$P_n = (n+1) \prod_{k=1}^n \left(X - \cot \left(\frac{k\pi}{n+1} \right) \right).$$

(c) D'après l'expression obtenue à la question précédente, on a :

$$P_n(0) = (n+1) \prod_{k=1}^n \left(-\cot \left(\frac{k\pi}{n+1} \right) \right) = (-1)^n (n+1) \prod_{k=1}^n \cot \left(\frac{k\pi}{n+1} \right)$$

D'après la question 3.(b), on a $P_n(0) = 0$ si n est impair et $P_n(0) = (-1)^{\frac{n}{2}}$ si n est pair. Finalement, on en déduit que :

$$\prod_{k=1}^{n} \cot \left(\frac{k\pi}{n+1}\right) = \begin{cases} 0 & \text{si } n \text{ est impair} \\ \frac{(-1)^{\frac{n}{2}}}{n+1} & \text{si } n \text{ est pair} \end{cases}$$