TD A3. Calculs algébriques

1 Sommes et produits

Exercice A3.1

Montrer que pour tout n > 1 entier, $\sum_{k=2}^{n} \frac{1}{k(k^2 - 1)} = \frac{n^2 + n - 2}{4n(n+1)}.$

Exercice A3.2

Soit $(a_i)_{i\in\mathbb{N}^*}$ une famille d'éléments de [0,1]. Montrer par récurrence que

$$\forall n \in \mathbb{N}, 1 - \sum_{i=1}^{n} a_i \leqslant \prod_{i=1}^{n} (1 - a_k).$$

Exercice A3.3

Soit $n \in \mathbb{N}^*$. Calculer

$$1. \sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right),$$

2.
$$\sum_{k=1}^{n} (3^k - 2k + n - 1),$$

3.
$$\sum_{k=1}^{n} \frac{k}{(k+1)!},$$

4.
$$\sum_{k=0}^{n} (2k+1)^2$$
 (de deux manières différentes),

5. $\sum_{k=1}^{n} k2^k$ (poser j = k - 1),

6.
$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right),$$

7.
$$\sum_{k=1}^{2n} |n-k|,$$

Exercice A3.4

- 1. Déterminer deux réels a et b tels que $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$. En déduire $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ pour tout $n \in \mathbb{N}$.
- 2. \bigstar Déterminer deux réels c et d tels que $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+2)} = \frac{c}{k} + \frac{d}{k+2}$. En déduire $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ pour tout $n \in \mathbb{N}$.

1

Exercice A3.5

Soit $n \in \mathbb{N}^*$. À l'aide du changement d'indice j = n - k, calculer $S_n = \sum_{k=0}^n \cos^2\left(\frac{k\pi}{2n}\right)$.

Exercice A3.6

1. Rappeler pourquoi $\forall x \in \mathbb{R}, \lfloor 2x \rfloor - \lfloor x \rfloor = \lfloor x + \frac{1}{2} \rfloor.$

2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n \left\lfloor \frac{x+2^k}{2^{k+1}} \right\rfloor$.

Exercice A3.7

Soit
$$n \in \mathbb{N}^*$$
. Calculer $\sum_{k=0}^{2n} \min(k, n)$ et en déduire $\sum_{k=0}^{2n} \max(k, n)$.

Exercice A3.8

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Calculer

1.
$$\prod_{k=1}^{n} \frac{(k+1)^k}{k^{k-1}},$$

$$2. \prod_{k=0}^{n} (2k+1),$$

$$3. \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right).$$

Exercice A3.9

Soit $p \in \mathbb{N}$ et $n \in \mathbb{N}^*$. Écrire les expressions suivantes avec le symbole produit puis à l'aide de factorielles.

1.
$$A = (p+1)(p+2)\dots(p+n)$$
,

$$2. B = 2 \times 4 \times 6 \times \ldots \times 2p,$$

3.
$$C = 1 \times 3 \times 5 \times \ldots \times (2p+1)$$
.

Exercice A3.10

Soit
$$n \in \mathbb{N}^*$$
. Calculer $P = \prod_{k=1}^n \cos\left(\frac{\pi}{2^{k+1}}\right)$.

2 Coefficients binomiaux

Exercice A3.11

Soit $n \in \mathbb{N}^*$. Calculer

1.
$$\sum_{k=0}^{n} \binom{n}{k},$$

$$2. \sum_{k=0}^{n} (-1)^k \binom{n}{k},$$

$$3. \sum_{k=0}^{n} 2^k \binom{n}{k}.$$

Exercice A3.12

Soit $n \in \mathbb{N}^*$.

1. Montrer que pour tout
$$k \in [1, n]$$
, $k \binom{n}{k} = n \binom{n-1}{k-1}$ (formule du Chef).

2. En déduire
$$\sum_{k=1}^{n} k \binom{n}{k}$$
.

Exercice A3.13

Pour tout $n \in \mathbb{N}$, on pose $A = \sum_{k=0}^{n} 2^k \binom{n}{2k}$ et $B = \sum_{k=0}^{n} 2^k \binom{n}{2k+1}$.

- 1. Exprimer $(1+\sqrt{2})^n$ et $(1-\sqrt{2})^n$ à l'aide de A et B.
- 2. En déduire les valeurs de A et B.

3 Sommes doubles

Exercice A3.14

Soit $n \in \mathbb{N}^*$. Calculer

$$1. \sum_{0 \leqslant i,j \leqslant n} 2^{2i-j},$$

$$2. \sum_{1 \leqslant i,j \leqslant n} i,$$

$$3. \sum_{1 \leqslant i \leqslant j \leqslant n} i,$$

$$4. \sum_{1 \leqslant i \leqslant j \leqslant n} (i+j),$$

$$5. \sum_{1 \le i < j \le n} (ij),$$

6.
$$\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{1}{i}$$
.

Exercice A3.15

Soit $n \in \mathbb{N}^*$.

1. Calculer
$$\sum_{1\leqslant i,j\leqslant n} \min(i,j)$$
 et $\sum_{1\leqslant i,j\leqslant n} \max(i,j)$.

$$\text{2. Calculer } \sum_{1\leqslant i,j\leqslant n} |i-j|.$$

Exercice A3.16

Soit
$$n \in \mathbb{N}$$
. Calculer $S_n = \sum_{k=0}^{n^2-1} \lfloor \sqrt{k} \rfloor$.

