Programme des interrogations orales de physique-chimie pour la semaine du lundi 03/11/25

Ouestions de cours :

- Propagation d'un signal
 - Exemples de signaux.
 - * Identifier les grandeurs physiques correspondant à des signaux acoustiques, électriques, électromagnétiques.
 - * Propagation d'un signal dans un milieu illimité, non dispersif et transparent
 - * Onde progressive dans le cas d'une propagation unidimensionnelle non dispersive.
 - * Célérité, retard temporel.
 - * Écrire les signaux sous la forme f(x-ct) ou g(x+ct).
 - * Écrire les signaux sous la forme f(t-x/c) ou g(t+x/c).
 - * Prévoir, dans le cas d'une onde progressive, l'évolution temporelle à position fixée et l'évolution spatiale à différents instants.
 - * Signal sinusoïdal.
 - * Caractériser un signal sinusoïdal en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.
 - * Modèle de l'onde progressive sinusoïdale unidimensionnelle. Vitesse de phase, déphasage, double périodicité spatiale et temporelle.
 - Citer quelques ordres de grandeur de fréquences dans les domaines acoustique, mécanique et électromagnétique.
 - * Établir la relation entre la fréquence, la longueur d'onde et la vitesse de phase.
 - * Relier le déphasage entre les signaux perçus en deux points distincts au retard dû à la propagation.
 - * Milieux dispersifs ou non dispersifs.
 - * Définir un milieu dispersif.
 - * Citer des exemples de situations de propagation dispersive et non dispersive.
- Électrocinétique 2 : Évolution temporelles de circuits linéaires
 - * Régime libre, réponse à un échelon de tension.
 - * Distinguer, sur un relevé expérimental, régime transitoire et régime permanent au cours de l'évolution d'un système du premier ordre soumis à un échelon de tension.
 - * Interpréter et utiliser la continuité de la tension aux bornes d'un condensateur ou de l'intensité du courant traversant une bobine.
 - Établir l'équation différentielle du premier ordre vérifiée par une grandeur électrique dans un circuit comportant une ou deux mailles.
 - * Déterminer la réponse temporelle dans le cas d'un régime libre ou d'un échelon de tension.
 - * Déterminer un ordre de grandeur de la durée du régime transitoire.
 - * Méthode d'Euler pour simuler la réponse d'un système linéaire du premier ordre à une excitation de forme quelconque.
 - * Stockage et dissipation d'énergie.
 - Réaliser un bilan énergétique.
 - * Oscillateur harmonique. Exemple du circuit LC.
 - * Établir et reconnaître l'équation différentielle qui caractérise un oscillateur harmonique ; la résoudre compte tenu des conditions initiales.
 - * Caractériser l'évolution en utilisant les notions d'amplitude, de période, de fréquence, de pulsation.
 - * Réaliser un bilan énergétique du circuit LC.

Exercices:

- Électrocinétique 2 : Évolution temporelles de circuits linéaires
- L'ensemble des chapitres vus précédemment