Nombres réels et suites numériques TD B2.

Suites usuelles

Exercice B2.1

Soit $C, N \in \mathbb{R}_+^*$. Donner dans chacun des cas l'expression de la suite (u_n) définie par les propriétés ci-dessous.

1.
$$\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 3u_n - 5 \end{cases}$$
,

2.
$$\begin{cases} u_0 = \frac{1}{N} \\ \forall n \in \mathbb{N}, \ u_{n+1} - u_n = C(1 - u_n) \end{cases}$$

Exercice B2.2

Donner dans chacun des cas l'expression de la suite (u_n) définie par les propriétés ci-dessous. Si nécessaire on distinguera les cas réel et complexe.

1.
$$\begin{cases} u_0 = 0, u_1 = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = -u_{n+1} + 2u_n \end{cases},$$
2.
$$\begin{cases} u_0 = 1, u_1 = 0 \\ \forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} + u_n \end{cases},$$

2.
$$\begin{cases} u_0 = 1, \ u_1 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 2u_{n+1} + u_n \end{cases}$$

3.
$$\begin{cases} u_0 = 1, \ u_1 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 4u_{n+1} - 4u_n \end{cases}$$

3.
$$\begin{cases} u_0 = 1, u_1 = 0 \\ \forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} - 4u_n \end{cases},$$
4.
$$\begin{cases} u_0 = 1, u_1 = 2 \\ \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n \end{cases},$$

Exercice B2.3

Déterminer l'expression de u_n et v_n pour tout $n \in \mathbb{N}$ dans chacun des cas suivants.

1.
$$\begin{cases} u_0 = 0, v_0 = 1 \\ u_{n+1} = 2u_n + v_n + 3 \\ v_{n+1} = u_n + 2v_n - 1 \end{cases}$$

2.
$$\begin{cases} u_0 = 0, \ v_0 = 1 \\ u_{n+1} = -u_n - v_n \\ v_{n+1} = \frac{4}{3}u_n + \frac{5}{3}v_n \end{cases}$$

Exercice B2.4

Soit $\lambda \in \mathbb{R}$ et $(u_n) \in \mathbb{C}^{\mathbb{N}}$ définie par $\begin{cases} u_0 = 1, \ u_1 = \lambda \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} - \frac{1}{4}u_n \end{cases}$. Déterminer l'ensemble des $\lambda \in \mathbb{C}$ tels que $(|u_n|)$ soit bornée.

1

Exercice B2.5

Soit (u_n) définie par $\begin{cases} u_0 = \frac{3}{5} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \lfloor 2u_n \rfloor + \frac{3}{5} \end{cases}$. Déterminer u_n en fonction de n.

2 Borne sup, borne inf

Exercice B2.6

Soit $a \in \mathbb{R}$. Montrer que $(\forall \varepsilon > 0, |a| \leqslant \varepsilon) \Leftrightarrow a = 0$.

Exercice B2.7

Déterminer, s'ils existent, la borne supérieure, la borne inférieure le minimum et le maximum des ensembles suivants.

- 1. $[1, 5[\cup]6, 8[,$
- 2. $\left\{ \frac{x^2 + 1}{x^2 + 2} \mid x \in \mathbb{R}_+ \right\}$
- $3. \left\{ 1 + \frac{1}{n} \mid n \in \mathbb{N}^* \right\},\,$

- 4. $\left\{ \frac{1}{n} + \frac{1}{m} \mid (n, m) \in (\mathbb{N}^*)^2 \right\}$
- 5. $\left\{ (-1)^n + \frac{1}{n} \mid n \in \mathbb{N}^* \right\},\,$
- 6. $\{x \in \mathbb{Q} \mid x^2 3x + 2 < 0\}$.

Exercice B2.8

Soit $n \in \mathbb{N}^*$. On définit $E_n = \left\{ k + \frac{n}{k} \mid k \in \mathbb{N}^* \right\}$.

- 1. Montrer que $\inf(E_n) \geqslant 2\sqrt{n}$.
- 2. À quelle condition a-t-on $\min(E_n) = 2\sqrt{n}$?

Exercice B2.9

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 définie par
$$\begin{cases} u_0 = 0, \ u_1 = \frac{4}{3} \\ \forall n \in \mathbb{N}, \ 3u_{n+2} = 2u_{n+1} + u_n \end{cases}$$

- 1. Déterminer l'expression de u_n pour tout $n \in \mathbb{N}$.
- 2. L'ensemble $E = \{u_n, n \in \mathbb{N}\}$ est-il borné? Si oui déterminer sup E et inf E.

Exercice B2.10

Soit A, B deux parties non vides et majorées de \mathbb{R} . On définit

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Montrer que A + B est majoré et que $\sup(A + B) = \sup(A) + \sup(B)$.

Exercice B2.11

Soient A et B deux parties non vides et bornées de \mathbb{R} .

- 1. Montrer que $A \cup B$ est majorée et que $\sup(A \cup B) = \max(\sup A, \sup B)$.
- 2. Énoncer un énoncé analogue pour $\inf(A \cup B)$.
- 3. Que peut-on dire de $A \cap B$?

Exercice B2.12

Soit $f:[0,1] \to [0,1]$ une fonction croissante. Soit $E = \{x \in [0,1] \mid f(x) \geqslant x\}$.

- 1. Montrer que E admet une borne supérieure notée b.
- 2. Montrer que f(b) = b. (on pourra étudier les cas f(b) < b et f(b) > b)

Exercice B2.13

On considère l'ensemble $A = \{x \in \mathbb{Q} \mid x \ge 0 \text{ et } x^2 \le 2\}.$

- 1. Montrer que A admet une borne supérieure dans $\mathbb R$ et la déterminer.
- 2. Soit M un nombre rationnel majorant de A. On pose $h = \frac{1}{2} \left(u + \frac{2}{u} \right)$.
 - (a) Montrer qu'on a $M^2 > 2$, 0 < h < M puis $h^2 > 2Mh M^2$ et enfin $h^2 > 2$.
 - (b) Montrer que h est un nombre rationnel majorant de A.
 - (c) En déduire que A n'a pas de borne supérieure dans \mathbb{Q} .

3 Suites

Exercice B2.14

Soit (u_n) et (v_n) deux suites réelles. Vrai ou faux ? (Justifier)

- 1. Si (u_n) converge et (v_n) diverge, alors $(u_n + v_n)$ diverge.
- 2. Si (u_n) diverge et (v_n) diverge, alors $(u_n + v_n)$ diverge.
- 3. Si (u_n) n'est pas majorée, alors (u_n) diverge vers $+\infty$.
- 4. Si $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$, alors (u_n) est convergente.
- 5. Si (u_n) est convergente, alors $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$.

Exercice B2.15

Montrer à l'aide de la définition de la limite que

1.
$$\sqrt{n} \xrightarrow[n \to +\infty]{} +\infty$$
,

$$2. \ \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0,$$

$$3. \frac{n^2+1}{n^2-1} \xrightarrow[n \to +\infty]{} 1.$$

Exercice B2.16

Établir la convergence ou la divergence de chacune des suites définies par les expressions ci-dessous.

(a)
$$\frac{\sin n}{n}$$
,

(e)
$$\left(1+\frac{x}{n}\right)^n$$
,

(a)
$$\frac{\sin n}{n}$$
,
(b) $\sqrt{n^2 + 3n} - \sqrt{n}$,

(f)
$$\left(\frac{n-1}{n+1}\right)^n$$
,

(c)
$$\frac{n^2 - n \ln n}{n^2 + n(\ln n)^2}$$
,

(g)
$$n \sin\left(\frac{1}{n^2}\right)$$
.

$$(d) \sqrt{n+1} - \sqrt{n-1},$$

- 1. Montrer que si $\ell < 1$, alors $u_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Montrer que si $\ell > 1$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- 3. Dans le cas où $\ell = 1$, donner trois exemples de suite (u_n) tels que

(a)
$$u_n \xrightarrow[n \to +\infty]{} 0$$
,

(b)
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
,

(c)
$$u_n \xrightarrow[n \to +\infty]{} 28.$$

Exercice B2.18

Montrer qu'une suite d'entiers qui converge est stationnaire.

Exercice B2.19

Soient (u_n) et (v_n) les suites définies pour tout $n \in \mathbb{N}$ par $u_n = \cos n$ et $v_n = \sin n$.

- 1. Montrer que si l'une de ces suites converge alors l'autre converge aussi.
- 2. En déduire que ces deux suites sont divergentes.

4 B2. Nombres réels et suites numériques

Exercice B2.20 (Moyenne de Cesàro)

- 1. Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ une suite qui converge vers 0. Montrer que la suite $\left(\frac{u_1 + \ldots + u_n}{n}\right)$ converge vers 0 également.
- 2. Même question dans le cas d'une suite de $\mathbb{C}^{\mathbb{N}}$ convergeant vers $\ell \in \mathbb{C}$ quelconque.
- 3. Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Montrer que si $(u_{n+1} u_n)$ converge vers ℓ , alors $\left(\frac{u_n}{n}\right)$ converge également vers ℓ .

Exercice B2.21

Soit
$$(S_n)$$
 définie pour tout $n \in \mathbb{N}^*$ par $S_n = \sum_{k=1}^n \frac{1}{n+k}$. Montrer que (S_n) converge.

Exercice B2.22

Soient (u_n) et (v_n) deux suites telles que $\lim_{n\to+\infty}u_nv_n=6$ et que pour tout $n\in\mathbb{N}$, on ait $\begin{cases} 0\leqslant u_n\leqslant 2\\ 0\leqslant v_n\leqslant 3 \end{cases}$ Que dire des suites (u_n) et (v_n) ? Le montrer.

Exercice B2.23

- 1. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $x^n + nx 1 = 0$ possède une unique solution réelle. On note x_n cette solution.
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ ainsi définie est convergente vers 0.

Exercice B2.24

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites définies par $b_0>a_0>0$ et pour tout $n\in\mathbb{N},\ a_{n+1}=\sqrt{a_nb_n}$ et $b_{n+1}=\frac{a_n+b_n}{2}$.

- 1. Montrer que $\forall n \in \mathbb{N}, a_n < a_{n+1} < b_{n+1} < b_n$.
- 2. Montrer que (a_n) et (b_n) convergent vers la même limite ℓ .

Exercice B2.25

Étant donné un nombre $x \in \mathbb{R}$, on définit pour tout $n \in \mathbb{N}$

$$a_n = \frac{\lfloor 10^n x \rfloor}{10^n}$$
 et $b_n = \frac{\lfloor 10^n x \rfloor + 1}{10^n}$.

Montrer que les suites (a_n) et (b_n) convergent vers x. Quel théorème cela permet-il de démontrer?

Exercice B2.26

Montrer que de toute suite réelle non majorée on peut extraire une suite qui diverge vers $+\infty$.

Exercice B2.27

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. Vrai ou faux? (Justifier)

- 1. Si (u_{2n}) et (u_{2n+1}) convergent, alors (u_n) converge.
- 2. Si (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent, alors (u_n) converge.

Exercice B2.28

Déterminer toutes les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ telles que $\forall x \in \mathbb{R}_+^*, f(f(x)) = 6x - f(x)$.

Exercice B2.29

Soit $A = \left\{ \frac{k}{2^n} \mid n \in \mathbb{N}, k \in \llbracket 0, 2^n \rrbracket \right\}$. Montrer que A est dense dans [0, 1].

