Programme des interrogations orales de physique-chimie pour la semaine du lundi 10/11/25

Ouestions de cours :

- Transformations 1 : Description d'un système et de son évolution vers un état final
 - * Système physico-chimique
 - * Espèces physico-chimiques.
 - * Recenser les espèces physico-chimiques présentes dans un système.
 - * Corps purs et mélanges : concentration en quantité de matière, fraction molaire, pression partielle.
 - * Composition d'un système physico-chimique.
 - * Décrire la composition d'un système à l'aide des grandeurs physiques pertinentes.
 - * Transformation chimique d'un système
 - * Modélisation d'une transformation par une ou plusieurs réactions chimiques.
 - * Écrire l'équation de la réaction (ou des réactions) qui modélise(nt) une transformation chimique donnée.
 - * Équation de réaction ; constante thermodynamique d'équilibre.
 - Évolution d'un système lors d'une transformation chimique modélisée par une seule réaction chimique : avancement, activité, quotient réactionnel, critère d'évolution.
 - * Décrire qualitativement et quantitativement un système chimique dans l'état initial ou dans un état d'avancement quelconque.
 - * Exprimer l'activité d'une espèce chimique pure ou dans un mélange dans le cas de solutions aqueuses très diluées ou de mélanges de gaz parfaits avec référence à l'état standard.
 - * Exprimer le quotient réactionnel.
 - * Prévoir le sens de l'évolution spontanée d'un système chimique.
 - * Composition chimique du système dans l'état final : état d'équilibre chimique, transformation totale.
 - Identifier un état d'équilibre chimique.
 - Déterminer la composition chimique du système dans l'état final, en distinguant les cas d'équilibre chimique ou de transformation totale, pour une transformation modélisée par une réaction chimique unique.
- Ondes 2 : Propagation d'un signal
 - * Exemples de signaux.
 - * Identifier les grandeurs physiques correspondant à des signaux acoustiques, électriques, électromagnétiques.
 - * Propagation d'un signal dans un milieu illimité, non dispersif et transparent
 - * Onde progressive dans le cas d'une propagation unidimensionnelle non dispersive.
 - * Célérité, retard temporel.
 - * Écrire les signaux sous la forme f(x-ct) ou g(x+ct).
 - Écrire les signaux sous la forme f(t-x/c) ou g(t+x/c).
 - * Prévoir, dans le cas d'une onde progressive, l'évolution temporelle à position fixée et l'évolution spatiale à différents instants.
 - * Signal sinusoïdal.
 - * Caractériser un signal sinusoïdal en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.
 - * Modèle de l'onde progressive sinusoïdale unidimensionnelle. Vitesse de phase, déphasage, double périodicité spatiale et temporelle.
 - Citer quelques ordres de grandeur de fréquences dans les domaines acoustique, mécanique et électromagnétique.
 - * Établir la relation entre la fréquence, la longueur d'onde et la vitesse de phase.
 - * Relier le déphasage entre les signaux perçus en deux points distincts au retard dû à la propagation.
 - Milieux dispersifs ou non dispersifs.
 - * Définir un milieu dispersif.
 - * Citer des exemples de situations de propagation dispersive et non dispersive.

Exercices:

- Ondes 2 : Propagation d'un signal
- L'ensemble des chapitres vus précédemment