<u>Chapitre C1</u>-

ENSEMBLES ET APPLICATIONS

Objectifs

- Opérations ensemblistes.
- Notions d'injectivité et de bijectivité.
- Notions d'image directe et d'image réciproque.
- Propriétés des relations binaires.

1 Ensembles

Un **ensemble** peut être vu comme une collection d'objets, appelés **éléments**. Un des axiomes de la théorie des ensembles est l'existence d'un ensemble qui ne contient aucun élément, appelé **ensemble vide** et noté \emptyset .

Notation. On note $x \in E$ le fait qu'un objet x appartienne à un ensemble E.

Définition C1.1

On dit qu'un ensemble F est **inclus** dans un ensemble E et on note $F \subset E$ lorsque

$$\forall x \in F, x \in E.$$

On dit aussi que F est une partie ou un sous-ensemble de E.

Remarque. Autrement dit : $F \subset E \Leftrightarrow \forall x, (x \in F \Rightarrow x \in E)$.

Notation. On note $\mathcal{P}(E)$ l'ensemble des parties d'un ensemble E.

Théorème C1.2 \models

Soit A et B des ensembles. On a

$$A = B \Leftrightarrow A \subset B \text{ et } B \subset A.$$

Remarque. On a plusieurs manières de décrire un ensemble : en extension (i.e. par une énumération complète de ses éléments) ou en compréhension ($\{x \mid P(x)\}$, où P(x) est un prédicat).

2

Étant données deux parties A et B d'un ensemble E, on définit

- (i) la **réunion** de A et $B: A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\},\$
- (ii) l'intersection de A et $B: A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\},\$
- (iii) la **différence** de B et $A: B \setminus A = \{x \in B \mid x \notin A\} = B \cap \overline{A}$.
- (iv) le **complémentaire** de A dans $E : \overline{A} = E \setminus A$.

On dit que A et B sont **disjointes** si leur intersection est vide.

On peut aussi noter $\mathcal{C}_E A = E \setminus A$, surtout s'il est nécessaire de préciser l'ensemble ambiant. Si l'ensemble E est sous-entendu, on peut aussi rencontrer $A^c = \overline{A}$.

Proposition C1.4

Étant données 3 parties A, B et C d'un ensemble E, on a

(i)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
;

(v)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
;

(ii)
$$\overline{\overline{A}} = A$$
;

(vi)
$$A \cap (B \cap C) = (A \cap B) \cap C$$
;

(iii)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
;

(vii)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(iv)
$$A \cup (B \cup C) = (A \cup B) \cup C$$
;

(vii)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

Remarque. À l'aide de ces opérations, on peut encore définir la **différence symétrique** : $A\Delta B = (A \setminus B)$ $(B \setminus A)$, qui correspond à un « ou exclusif ».

Définition C1.5

Soit E et I deux ensembles. Étant donnée $(A_i)_{i\in I}$ une famille de parties de E, on appelle

(i) **réunion** des (A_i) :

$$\bigcup_{i \in I} A_i = \{ x \in E \mid \exists i \in I, \ x \in A_i \},\$$

(ii) intersection des (A_i) :

$$\bigcap_{i \in I} A_i = \{ x \in E \mid \forall i \in I, \ x \in A_i \}.$$

Proposition C1.6

Avec les mêmes notations, soit X une partie de E. On a

(i)
$$\left(\bigcup_{i\in I} A_i\right) \cap X = \bigcup_{i\in I} (A_i \cap X),$$

(ii) $\left(\bigcap_{i\in I} A_i\right) \cup X = \bigcap_{i\in I} (A_i \cup X),$

(iii)
$$\bigcup_{i \in I} A_i \subset X \Leftrightarrow (\forall i \in I, A_i \subset X),$$

(ii)
$$\left(\bigcap_{i\in I} A_i\right) \cup X = \bigcap_{i\in I} (A_i \cup X)$$

(iv)
$$X \subset \bigcap_{i \in I} A_i \Leftrightarrow (\forall i \in I, X \subset A_i).$$

Soit E et I deux ensembles. Étant donnée $(A_i)_{i\in I}$ une famille de parties de E, on dit que

- (i) $(A_i)_{i \in I}$ est un **recouvrement disjoint** de E lorsque

 - $\bullet \ \forall i, j \in I, \ i \neq j \Rightarrow A_i \cap A_j = \emptyset.$
- (ii) $(A_i)_{i\in I}$ est une **partition** de E lorsque c'est un recouvrement disjoint tel que, de plus, $\forall i \in I, A_i \neq \emptyset.$

Définition C1.8

Étant donnés deux ensembles E et F, on définit l'ensemble produit $E \times F$ par

$$E \times F = \{(x,y) \mid x \in E, y \in F\}.$$

$\mathbf{2}$ Applications

Définition C1.9

Soient E et F deux ensembles non vides. Une fonction ou application f de E vers F est une correspondance qui à tout élément $x \in E$ associe un unique élément de F, noté f(x).

Si y = f(x), on dit que y est l'image de x et que x est un antécédent de y par f.

E s'appelle ensemble de définition ou ensemble de départ de f et F son ensemble d'arri-

On définit le **graphe** de f comme la partie $G_f = \{(x, f(x)) \mid x \in E\}$ de $E \times F$.

Notation. L'ensemble des applications de E dans F est noté $\mathscr{F}(E,F)$ ou F^E

Remarque. Cette définition peut être étendue au cas $E = \emptyset$ (mais pas $F = \emptyset$, sauf si $E = F = \emptyset$), mais l'application « vide » ainsi définie n'a d'intérêt que pour avoir une définition absolument complète dans un cours de théorie des ensembles. Notons que dans ce cadre, on n'aurait, d'ailleurs, pas défini une fonction f comme précédemment mais plutôt comme une partie de $E \times F$ telle que $\forall x \in E, \exists ! y \in F, (x,y) \in f$ identifiant ainsi une fonction et son graphe.

Exemples.

• On appelle **identité de** E l'application $id_E: E \to E$ définie par

$$\forall x \in E, id_E(x) = x.$$

Son graphe est appelé **diagonale** de $E \times E$.

• Soit $A \subset E$. On appelle fonction indicatrice de A l'application $\mathbb{1}_A : E \to \{0,1\}$ définie par

$$\forall x \in E, \ \mathbb{1}_A(x) = \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ sinon} \end{cases}$$

Soient E et F deux ensembles et $A \subset E$.

- (i) Si $f: E \to F$, on appelle **restriction** de f à A l'application $f|_A: A \to F$ définie pour tout $x \in A$ par $f|_A(x) = f(x)$.
- (ii) Si $g: A \to F$, on dit que $f: E \to F$ est un **prolongement** de g à E si $g = f|_A$.

Définition C1.11

Soient $f: E \to F$ et $g: F \to G$. On appelle **composée** de f et g et on note $g \circ f$ l'application $x \mapsto g(f(x))$ de E dans G.

Définition C1.12

Soit $f: E \to F$. On dit que

- (i) f est **injective** si tout élément de F admet au plus un antécédent ;
- (ii) f est surjective si tout élément de F admet au moins un antécédent ;
- (iii) f est **bijective** si tout élément de F admet exactement un antécédent.

Remarques.

- Une application est bijective si et seulement si elle est injective et surjective.
- On utilise le plus souvent cette caractérisation de l'injectivité :

$$\forall x, y \in E, f(x) = f(y) \Rightarrow x = y,$$

ou parfois sa contraposée.

Théorème et définition C1.13

Soit $f:E\to F$ une application bijective. Alors il existe une unique application $g:F\to E$ telle que

$$g \circ f = \mathrm{id}_E$$
 et $f \circ g = \mathrm{id}_F$.

Cette application est appelée **bijection réciproque** de f et notée f^{-1} .

Remarque. C'est l'application de F dans E qui à tout élément y de F associe son unique antécédent par f:

$$\forall (x,y) \in E \times F, \, y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Proposition C1.14

Soient $f: E \to F$ et $g: F \to G$.

- (i) Si f et g sont injectives, alors $g \circ f$ est injective.
- (ii) Si f et g sont surjectives, alors $g \circ f$ est surjective.
- (iii) Si $g \circ f$ est injective, alors f est injective.
- (iv) Si $g \circ f$ est surjective, alors g est surjective.
- (v) Si f et g sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- (vi) Si f est bijective, alors f^{-1} l'est aussi et $(f^{-1})^{-1} = f$.

Remarque. Évident mais pas anodin : par conséquent, la composée de deux bijections est une bijection.

Définition C1.15

Soit $f: E \to F$.

(i) Étant donnée $A \subset E$, on appelle **image directe** de A par f

$$f(A) = \{ f(x) \, | \, x \in A \}.$$

(ii) Étant donnée $B \subset F$, on appelle **image réciproque** de B par f

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}.$$

Remarque. Si f est bijective, l'image réciproque de B par f coïncide avec l'image directe de B par la bijection réciproque f^{-1} . Mais la notation $f^{-1}(B)$ reste valable même si f n'est pas bijective et dans ce cas, parler de l'application f^{-1} n'a bien sûr aucun sens.

3 Relations binaires

Définition C1.16

Soit E un ensemble. Une **relation binaire** \mathcal{R} sur E est la donnée d'une partie \mathcal{G} de $E \times E$. Étant donnés $x, y \in E$, on dit que x est **en relation avec** y (et on note $x\mathcal{R}y$) lorsque $(x, y) \in \mathcal{G}$.

Définition C1.17

Soit \mathcal{R} une relation binaire sur un ensemble E. On dit que \mathcal{R} est

- (i) **réflexive** lorsque $\forall x \in E, x \mathcal{R} x$,
- (ii) symétrique lorsque $\forall x, y \in E, x\mathcal{R}y \Rightarrow y\mathcal{R}x$,
- (iii) transitive lorsque $\forall x, y, z \in E$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z$,
- (iv) antisymétrique lorsque $\forall x, y \in E, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x = y.$

Soit E un ensemble et \mathcal{R} une relation binaire sur E.

- (i) On dit que \mathcal{R} est une relation d'ordre lorsqu'elle est réflexive, transitive et antisymétrique.
- (ii) On dit que \mathcal{R} est une relation d'ordre total lorsque de plus :

$$\forall x, y \in E, (x\mathcal{R}y \text{ ou } y\mathcal{R}x).$$

(iii) Dans le cas contraire, on dit que c'est une relation d'ordre partiel.

Définition C1.19

Soit E un ensemble et \mathcal{R} une relation binaire sur E.

- (i) On dit que \mathcal{R} est une **relation d'équivalence** lorsqu'elle est réflexive, symétrique et transitive.
- (ii) Dans ce cas, pour tout $x \in E$, on définit la classe d'équivalence de x par :

$$\overline{x} = \{ y \in E \mid x \mathcal{R} y \}.$$

Proposition C1.20

Soit E un ensemble muni d'une relation d'équivalence \mathcal{R} . Soit $x, y \in E$.

- Si $x\mathcal{R}y$, alors $\overline{x} = \overline{y}$.
- Sinon $\overline{x} \cap \overline{y} = \emptyset$.

Proposition C1.21

Soit E un ensemble muni d'une relation d'équivalence \mathcal{R} . Alors $\{\overline{x} \mid x \in E\}$ forme une partition de E.

Méthodes

- Démonstration de relations ensemblistes :
 - ➤ inclusion d'ensembles,
 - ➤ être dans une intersection d'ensembles,
 - > être dans une réunion d'ensembles.
- Caractérisation de l'appartenance à
 - > une image directe,
 - > une image réciproque.
- Caractérisation d'une application
 - ➤ injective,
 - > surjective.
- Vérifier qu'une relation binaire est
 - > une relation d'ordre,
 - > une relation d'équivalence.

