Programme de colle 8: du 17/11 au 21/11

Suites usuelles

- Suites usuelles : arithmétiques, géométriques, arithmético-géométriques.
- Suites vérifiant une relation de récurrence linéaire d'ordre 2 : classification suivant Δ , cas complexe et réel.
- Bornes supérieures et inférieures : définition, existence, détermination pratique.
- Convergence de suites : définitions (CV, DV, limite), résultats théoriques (unicité de la limite, liens avec la relation d'ordre).
- Limites : opérations, théorème des gendarmes.
- Suites extraites (caractérisation de la convergence, Bolzano-Weierstrass).
- Monotonie : convergence monotone, suites adjacentes (définition, convergence).
- Caractérisations séquentielles de la borne sup (ou inf), de la densité, de la limite (ou la continuité) d'une fonction.

Exercices abordés dans le TD B2 : 1, 2, 3, 6, 7, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27.

Logique

• Récurrence forte.

Questions de cours

- ➤ Tout calcul de l'expression d'une suite arithmético-géométrique ou linéaire d'ordre 2.
- > Unicité de la limite dans le cas des suites convergentes.
- ➤ Limite d'un produit de deux suites convergentes.
- > Suites adjacentes : définition et propriété de convergence commune (avec démonstration).

$$\Rightarrow \text{ Si } \begin{cases} \forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 2 \\ \forall n \in \mathbb{N}, \ 0 \leqslant v_n \leqslant 3 \\ u_n v_n \to 6 \end{cases}, \text{ alors } u_n \to 2 \text{ et } v_n \to 3.$$

Remarques

- Le raisonnement par récurrence forte complète désormais notre panoplie pour les raisonnements par récurrence.
- La manipulation des ε est un des enjeux de l'année, mais une grosse nouveauté. On essaiera d'être exigeant en rigueur, mais indulgent sur la prise d'initiative.

Recommandations générales

La colle commencera par une question de cours. On vérifiera également au fil des exercices que le cours est maîtrisé. Si c'est le cas, la note finale est à deux chiffres. Sinon, impossible de dépasser 10.