Problème 1

Dans tout le problème, $(u_n)_{n\in\mathbb{N}}$ désigne une suite réelle bornée.

1. Les parties A et B sont non vides, majorées et incluses dans \mathbb{R} , d'après la propriété de la borne supérieure $\sup(A)$ et $\sup(B)$ existent. Par définition de la borne supérieure, on a :

$$\forall b \in B, \ b \le \sup(B)$$

Comme $A \subset B$, on a en particulier :

$$\forall a \in A, \ a \leq \sup(B)$$

Par passage à la borne supérieure, on obtient bien : $\sup(A) \leq \sup(B)$.

Si
$$A \subset B$$
 alors $\sup(A) \le \sup(B)$

A Définition

- 2. (a) Soit $n \in \mathbb{N}$.
 - E_n est une partie de \mathbb{R}
 - E_n est non vide car $u_n \in E_n$ par définition de E_n
 - E_n est majoré et minoré car (u_n) est bornée

D'après les propriétés de la borne inférieure et de la borne supérieure, cela suffit à affirmer que E_n possède une borne supérieure et une borne inférieure.

$$\sup(E_n)$$
 et $\inf(E_n)$ existent

(b) Soit $n \in \mathbb{N}$, on a $E_{n+1} \subset E_n$. En effet, pour tout $k \in \mathbb{N}$, on a : $(k \ge n+1) \Rightarrow (k \ge n)$. D'après la question préliminaire, qui s'applique car pour tout $n \in \mathbb{N}$, E_n est non vide et majoré, on a $\sup(E_{n+1}) \le \sup(E_n)$. C'est-à-dire $s_{n+1} \le s_n$.

$$(s_n)$$
 est décroissante

En utilisant la même démarche que dans la question préliminaire, on démontre que si $A \subset B$ avec A et B deux parties de \mathbb{R} , non vides et minorées alors $\inf(A) \geq \inf(B)$. Dans notre contexte, on obtient que pour tout $n \in \mathbb{N}$, $i_{n+1} \geq i_n$.

$$(i_n)$$
 est croissante

(c) Par hypothèse, la suite (u_n) est bornée, ainsi il existe $(m, M) \in \mathbb{R}^2$ tels que pour tout $n \in \mathbb{N}$, $m \leq u_n \leq M$.

D'autre part, par définition de la borne supérieure, pour tout $n \in \mathbb{N}$, s_n est un majorant de E_n , c'est-à-dire que :

$$\forall k \geq n, \ u_k \leqslant s_n$$

En particulier la suite (s_n) est minorée par m. La suite (s_n) est décroissante et minorée par m, d'après le théorème de la limite monotone, elle converge.

De même, pour tout $n \in \mathbb{N}$, i_n est un minorant de E_n donc :

$$\forall k \geq n, \ M \geq u_k \geq i_n$$

La suite (i_n) est croissante et majorée par M, elle converge.

$$(s_n)$$
 et (i_n) convergent

3. (a) Si la suite (u_n) est constante égale à 0 alors pour tout $n \in \mathbb{N}$, on a : $E_n = \{0\}$ et $s_n = i_n = 0$. Dans ce cas $L_s = L_i = 0$.

$$L_s = L_i = 0$$

(b) Dans ce cas, pour tout $n \in \mathbb{N}$, on a : $E_n = \{-1, 1\}$. On en déduit que pour tout $n \in \mathbb{N}$, $s_n = 1$ et $i_n = -1$ ainsi :

$$L_s = 1 \text{ et } L_i = -1$$

- (c) Pour tout $n \in \mathbb{N}$, on a : $E_n = \left\{ \frac{1}{k+1}, \ k \ge n \right\}$. On a :
 - La borne supérieure de E_n vaut $\frac{1}{n+1}$ car c'est le maximum de E_n .
 - ullet La borne inférieure de E_n vaut 0. En effet :
 - ightharpoonup 0 est un minorant de E_n
 - \blacktriangleright Pour tout $\varepsilon>0,\,0+\varepsilon$ n'est plus un minorant car d'après la définition de la limite :

$$\exists N \ge n, \ \frac{1}{N+1} < \varepsilon$$

Finalement pour tout $n \in \mathbb{N}$, $s_n = \frac{1}{n+1}$ et $i_n = 0$, on en déduit que :

$$L_s = L_i = 0$$

B Lien avec la convergence

4. Pour tout $n \in \mathbb{N}$, la borne supérieure de E_n est en particulier un majorant de E_n et la borne inférieure de E_n est un minorant de E_n . Ainsi :

$$\forall k \ge n, \ i_n \leqslant u_k \leqslant s_n$$

En particulier:

$$\forall n \in \mathbb{N}, \ i_n \leqslant u_n \leqslant s_n$$

On a $\lim_{n\to+\infty}i_n=\lim_{n\to+\infty}s_n$ car $L_i=L_s$, d'après le théorème d'encadrement, on en déduit que $\lim_{n\to+\infty}u_n=L_i$.

$$(u_n)$$
 converge

5. En reprenant la démarche de la question précédente, on a :

$$\forall k \geq n, \ i_n \leqslant u_k \leqslant s_n$$

En particulier, si on appelle $\varphi : \mathbb{N} \to \mathbb{N}$ l'extractrice (telle que $v_n = u_{\varphi(n)}$ pour tout n), pour tout $n \in \mathbb{N}$, on a $\varphi(n) \geq n$ donc :

$$\forall n \in \mathbb{N}, \ i_n \leqslant u_{\varphi(n)} \leqslant s_n$$

On passe à la limite quand n tend vers $+\infty$ et on obtient :

$$L_i \leqslant \lim_{n \to +\infty} u_{\varphi(n)} \leqslant L_s$$

6. Soit $\varepsilon > 0$, par définition de la limite, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_n - l| \le \varepsilon$, c'est-à-dire : $l - \varepsilon \le u_n \le l + \varepsilon$.

Par passage à la borne supérieure et à la borne inférieure, il vient :

$$\forall n \geq n_0, \ l - \varepsilon \leqslant i_n \leqslant s_n \leqslant l + \varepsilon$$

On a démontré que :

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ |i_n - l| \leqslant \varepsilon \text{ et } |s_n - l| \leqslant \varepsilon$$

C'est-à-dire que (i_n) tend vers l et (s_n) tend vers l, par unicité de la limite :

$$L_i = L_s = l$$

- 7. On va construire l'extractrice φ par récurrence forte.
 - On pose $\varphi(0) = 0$.
 - Fixons $n \in \mathbb{N}^*$, supposons avoir défini $\varphi(k)$ pour $k \in [0, n-1]$. On considère $E_{\varphi(n-1)+1} = \{u_k, k \ge \varphi(n-1)+1\}$, par définition de la borne supérieure de cet ensemble, il existe $p \ge \varphi(n-1)+1$ tel que :

$$s_{\varphi(n-1)+1} - \frac{1}{n} \leqslant u_p \leqslant s_{\varphi(n-1)+1}$$

ceci puisque $s_{\varphi(n-1)+1}-\frac{1}{n}$ n'est pas un majorant de $E_{\varphi(n-1)+1}$ et $s_{\varphi(n-1)+1}$ est un majorant de $E_{\varphi(n-1)+1}$. On pose $\varphi(n)=p$.

Par construction, on a pour tout $n \in \mathbb{N}^*$, $\varphi(n) > \varphi(n-1)$ donc φ est strictement croissante. D'autre part, on a :

$$\forall n \in \mathbb{N}^*, \ s_{\varphi(n-1)+1} - \frac{1}{n} \leqslant u_{\varphi(n)} \leqslant s_{\varphi(n-1)+1}$$

Par passage à la limite, d'après le théorème d'encadrement, on a : $\lim_{n \to +\infty} u_{\varphi(n)} = L_s$.

$$u_{\varphi(n)}$$
 tend vers L_s

C Un dernier raffinement

- 8. Pour $n \in \mathbb{N}$, on a pose $F_n = \{u_{2k}, 2k \geq n\}$ et $G_n = \{u_{2k+1}, 2k+1 \geq n\}$. Ces ensembles sont non vides et majorés donc $f_n = \sup(F_n)$ et $g_n = \sup(G_n)$ existent. Montrons que $s_n = \max(f_n, g_n)$ et supposant sans perte de généralité que $f_n \geq g_n$.
 - Pour tout $k \ge n$, on a : $s_n \ge u_k$, en particulier si $2k \ge n$, on a : $s_n \ge u_{2k}$ et si $2k + 1 \ge n$ alors $s_n \ge u_{2k+1}$. Par passage à la borne supérieure, on a : $s_n \ge f_n$ et $s_n \ge g_n$ donc $s_n \ge \max(f_n, g_n)$.
 - Il reste à démontrer que $s_n \leq \max(f_n, g_n) = f_n$. Pour tout $k \geq n$, on a :

$$u_k \leqslant f_n$$
 ou $u_k \leqslant g_n \leqslant f_n$ selon la parité de k

Par passage à la borne supérieure, on obtient $s_n \leqslant f_n$.

Finalement $s_n = f_n$ et on a démontré que :

$$\forall n \in \mathbb{N}, \ s_n = \max(f_n, g_n)$$

On remarque que pour tout $(a, b) \in \mathbb{R}^2$, on a :

$$\max(a,b) = \frac{1}{2}(|a-b| + a + b)$$

ce qui se démontre immédiatement par disjonction de cas $a \geq b$ puis $b \geq a$. Ici cela donne, pour tout $n \in \mathbb{N}$:

$$s_n = \frac{1}{2}(|f_n - g_n| + f_n + g_n)$$

On passe à la limite quand n tend vers $+\infty$ en utilisant notamment la continuité de la fonction valeur absolue :

$$L_s = \frac{1}{2} \Big(|\limsup_{n \to +\infty} v_n - \limsup_{n \to +\infty} w_n| + \limsup_{n \to +\infty} v_n + \limsup_{n \to +\infty} w_n \Big) = \max \Big\{ \limsup_{n \to +\infty} v_n, \limsup_{n \to +\infty} w_n \Big\}$$

On adapte la démarche précédente, en remplaçant borne supérieure par borne inférieure et en remarquant que l'on a :

$$\forall (a,b) \in \mathbb{R}^2, \ \min(a,b) = \frac{1}{2}(-|a-b| + a + b)$$

Ce qui démontre le résultat voulu :

$$L_s = \max \left\{ \lim_{n \to +\infty} \sup_{n \to +\infty} v_n, \lim_{n \to +\infty} \sup_{n \to +\infty} w_n \right\} \text{ et } L_i = \min \left\{ \lim_{n \to +\infty} \inf_{n \to +\infty} v_n, \lim_{n \to +\infty} \inf_{n \to +\infty} w_n \right\}$$