Problème 1

Soit I un intervalle de \mathbb{R} .

Étant donnée $f: \mathbb{R} \to \mathbb{R}$ fonction continue, on appelle (u_n) la suite définie par $\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$.

A Propriétés générales

On suppose dans toute cette partie que $f(I) \subset I$. On dit que I est un intervalle **stable** par f. On se convaincra aisément que cela revient à la formulation équivalente suivante : pour tout $x \in I$, $f(x) \in I$.

- 1. On procède par récurrence : $u_0 \in I$ et pour $n \in \mathbb{N}$, si $u_n \in I$, alors $u_{n+1} = f(u_n) \in I$ par stabilité. Donc pour tout $n \in \mathbb{N}$, $u_n \in I$.
- 2. On suppose dans cette question que f est croissante.
 - (a) On montre par récurrence que pour tout $n \in \mathbb{N}$, $u_n \leqslant u_{n+1}$. Tout d'abord $u_0 \leqslant u_1$. Puis pour $n \in \mathbb{N}$, si $u_n \leqslant u_{n+1}$, alors par croissance de f, $f(u_n) \leqslant f(u_{n+1})$. Donc u_n est croissante. Si $u_0 \geqslant u_1$, un raisonnement analogue montre que u_n est décroissante.
 - (b) Dans le cas où I = [a, b] est borné (avec $a, b \in \mathbb{R}$ tels que a < b), avec $u_0 \in I$, comme f croissante, (u_n) est monotone d'après 2a. De plus, (u_n) est bornée par [a, b] d'après 1. Donc (u_n) est convergente.
 - (c) On a la relation $u_{n+1} = f(u_n)$ pour tout n. Lorsque n tend vers $+\infty$, $u_{n+1} \to \ell$ et par continuité de f, $f(u_n) \to f(\ell)$. Finalement $\ell = f(\ell)$.
- 3. On suppose dans cette question que f est décroissante. On pose, pour tout $n, v_n = u_{2n}$ et $w_n = u_{2n+1}$.
 - (a) Comme $f(I) \subset I$, $f(f(I)) \subset f(I)$ (résultat classique sur les images directes de deux parties incluses l'une dans l'autre, ou bien refaire le raisonnement dans le cas présent). Or $f(I) \subset I$. Donc $f(f(I)) \subset I$, et donc $f(I) \subset I$ intervalle stable par $f \circ f$.
 - (b) Soit $x \leq y$ deux réels. Par décroissance de f, $f(x) \geq f(y)$, puis à nouveau : $f(f(x)) \leq f(f(y))$. Donc $(f \circ f)(x) \leq (f \circ f)(y)$, ce qui montre que $f \circ f$ est croissante.
 - (c) $\bullet \ \forall n \in \mathbb{N}, \ v_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})).$ Finalement $v_{n+1} = (f \circ f)(v_n)$
 - On obtient de même $w_{n+1} = (f \circ f)(w_n)$
 - (d) D'après la relation de récurrence précédente, $f \circ f$ étant croissante, (v_n) et (w_n) sont monotones
 - De plus par décroissance de f, si $u_{2n} \leqslant v_{2n+2}$, alors $u_{2n+1} = f(u_{2n}) \geqslant f(u_{2n+2}) = u_{2n+3}$. Ainsi, si $v_n \leqslant v_{n+1}$, alors $w_n \geqslant w_{n+1}$.
 - On a de même : si $v_n \ge v_{n+1}$, alors $w_n \le w_{n+1}$. Ceci montre que (v_n) et (w_n) sont de monotonies contraires.
 - (e) Comme dans la question 2c, on passe à la limite dans la relation $v_{n+1} = f(f(v_n))$ par continuité de $f \circ f$, ce qui donne $\ell = f(f(\ell))$.

В Etude de deux exemples

- 4. On pose $f: x \mapsto \sqrt{x+2}$
 - La fonction $\sqrt{\text{est définie sur } \mathbb{R}_+}$, dérivable sur \mathbb{R}_+^* .
 - La fonction $x \mapsto x+2$ est définie et dérivable sur \mathbb{R} (polynôme) et $x+2>0 \Leftrightarrow x>-2$.

Par composition, f est définie sur $[-2, +\infty[$ et dérivable sur $]-2, +\infty[$.

Elle est strictement croissante sur $]-2,+\infty[$ et on a les valeurs $f(-2)=0, f(0)=\sqrt{2}$ et f(2)=2,ainsi que la limite $\lim_{x \to +\infty} f(x) = +\infty$.

 $\text{Donc } f([0,2[)=[\sqrt{2},2[\subset [0,2[\ \text{et } f(]2,+\infty[)=]2,+\infty[.$

Donc [0, 2[et $]2, +\infty[$ sont des intervalles stables par f

- (b) $f(x) = x \Rightarrow x + 2 = x^2 \Rightarrow x = 2$ ou -1. Réciproquement, seule 2 est solution
- De plus f(x) x > 0 si x < 2 et f(x) x < 0 si x > 2 (c) On définit $(u_n)_{n \in \mathbb{N}}$ par $\begin{cases} u_0 \in [0, 2[\\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$
 - D'après 1, $u_n \in [0, 2[$ pour tout $n \in \mathbb{N}$
 - D'après 2, comme f est croissante, (u_n) est monotone.
 - $u_1 u_0 = f(u_0) u_0 > 0$ donc (u_n) est croissante.
 - (u_n) est convergente et sa limite est 2.
- (d) Pour tout $n \in \mathbb{N}$, $u_n \in [2, +\infty[$, (u_n) est décroissante et minorée donc converge et sa limite vaut
- 5. On pose $g: x \mapsto \cos(x)$ et $I = \left[0, \frac{\pi}{2}\right]$.
 - (a) La fonction cos, définie sur \mathbb{R} , réalise une bijection décroissante de I dans [0,1]. Ainsi g(I)= $[0,1] \subset I$. Donc I est un intervalle stable par g et donc par $g \circ g$ (par 3a).
 - (b) $x \mapsto g(x) x$ est bijective sur I (car sa dérivée est négative) et vaut 1 en 0 et -1 en $\frac{\pi}{2}$.

Donc g(x) - x = 0 admet une unique solution $\alpha \in I$

Ainsi $g([0,\alpha]) = [\alpha,1] \subset \left[\alpha,\frac{\pi}{2}\right], \text{ donc } g(g([0,\alpha])) \subset g\left(\left[\alpha,\frac{\pi}{2}\right]\right) = [0,\alpha].$

De même $g\left(g\left(\left[\alpha,\frac{\pi}{2}\right]\right)\right) \subset \left[\alpha,\frac{\pi}{2}\right].$ Donc $\left[0,\alpha\right]$ et $\left[\alpha,\frac{\pi}{2}\right]$ sont des intervalles stables par $g\circ g$.

(c) On définit $(x_n)_{n\in\mathbb{N}}$ par $\begin{cases} x_0\in[0,\alpha[\\\forall n\in\mathbb{N},\,x_{n+1}=g(x_n) \end{cases}$ avec g décroissante. D'après la question $3,(v_n)$

est croissante et bornée par 0 et α tandis que (w_n) est décroissante et bornée par α et $\frac{\pi}{2}$. Toutes deux convergent donc vers la seule limite possible, solution de $(g \circ g)(x) = x : \alpha$.

D'après la propriété admise, $|(x_n)|$ converge également vers α