
Sol B4. Continuité et dérivabilité

Exercice B4.2

Déterminer les fonctions f : R → R périodiques qui convergent en +∞.

Analyse. Soit f une telle fonction, notons ℓ sa limite en +∞ et T sa période (positive). ∀x ∈ R, ∀n ∈ N,
f(x) = f(x+ nT ).
On fait tendre n vers +∞. On a alors ∀x ∈ R, f(x) = ℓ. Donc f est constante.

Synthèse. Les fonctions constantes sont périodiques et convergent en +∞.

Conclusion : les solutions du problème sont les fonctions constantes.

Exercice B4.3

Montrons que f : x 7→ xx

⌊x⌋⌊x⌋
n'a pas de limite quand x → +∞ en exhibant deux suites de valeurs avec

des comportements di�érents.

• D'une part, ∀n ∈ N, f(n) =
nn

nn
−−−−−→
n→+∞

+∞.

• D'autre part, ∀n ∈ N,

f

(
n+

1

2

)
=

(
n+ 1

2

)n+ 1
2

nn

⩾
nn+ 1

2

nn
car n ⩽ n+

1

2

⩾
nnn

1
2

nn

⩾ n
1
2 .

Donc f

(
n+

1

2

)
−−−−−→
n→+∞

+∞ par comparaison.

Finalement, f n'a pas de limite en +∞.

Exercice B4.4

(i)
(ln(lnx))2 − cos5 x+ lnx

2x − 50x6
=

lnx

2x

(
. . .

)
︸ ︷︷ ︸
−−−−→
x→+∞

1

−−−−→
x→+∞

0 .

(ii) Multiplier numérateur et dénominateur par x − 1 pour faire apparaître deux taux d'accroissement en

x → 1. On peut aussi poser x = 1 + h et raisonner en h → 0. Cela donne lim
x→1

√
2− x2 − 1

lnx
= −1 .

(iii) lim
x→0

x sin(1/x) = 0 par encadrement et ∀x ̸= 0, x sin(1/x) =
sin(1/x)

1/x
donc lim

x→∞
x sin(1/x) = 1 par

composition de limites.

(iv)

√
3 cosx− sinx

x− π/3
= −2

sin(x− π/3)

x− π/3
−−−→
x→π

3

−2 .
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Exercice B4.5

• ∀x > 0, f(x) = xx = ex ln(x). Or x ln(x) −−−→
x→0

0 (croissances comparées). Donc f(x) −−−−→
x→0+

1.

• ∀x < 0, f(x) =
xex

1− ex
= −

(
ex − 1

x

)
ex. Or

ex − 1

x
−−−→
x→0

1 (taux d'accroissement).

Donc f(x) −−−−→
x→0+

−1.

On ne peut donc pas prolonger f par continuité en 0.

Exercice B4.6

Étudier la continuité et l'éventuel prolongement par continuité des fonctions suivantes.

1. f est continue sur R \ {−1} et ∀x ̸= −1, f(x) =
1

x2 − x+ 1
−−−−→
x→−1

1

3
donc f est prolongeable par

continuité en −1 par la valeur
1

3
.

2. g est continue sur R∗ et g(x) −−−→
x→0

0 donc g est prolongeable par continuité en 0 par la valeur 0.

3. h est continue sur R \ {−1, 1}. h a une limite in�nie en −1+ et en −1−. Donc h n'est par prolongeable
par continuité en 0.

∀x ∈ R \ {−1, 1}, h(x) =
x− 1

1− x2
=

−1

1 + x

− 1
2−−−→

x→1
donc h est prolongeable par continuité en 1 par la

valeur −1

2
.

Exercice B4.9

1. Analyse Soit f : [0, 1] → R continue telle que ∀x ∈ [0, 1], f(x2) = f(x).

Soit x ∈ [0, 1[. Montrons par récurrence que pour tout n ∈ N, f(x2
n
) = f(x).

L'initialisation est vraie car f(x) = f(x).
Soit n ∈ N. Supposons f(x2

n
) = f(x).

Alors f(x) = f(x2
n
) = f

(
(x2

n
)2
)
= f

(
x2

n × 2
)
= f

(
x2

n+1
)
.

Ainsi ∀n ∈ N, f(x) = f(x2
n
).

Par passage à la limite et continuité de f , f(x) = f(0). Donc f est constante sur [0, 1[.
Finalement, par continuité, f est également constante sur [0, 1].

Synthèse Les fonctions constantes sont continues et véri�ent bien ∀x ∈ [0, 1], f(x2) = f(x).

Trouver toutes les fonctions continues f : [0, 1] → R telles que f(x2) = f(x).

2. Même jeu avec f(x) = f
( x

3n

)
.

Exercice B4.16

f est continue et dérivable sur ]0, π/2] comme quotient de fonctions qui le sont, car sinx ̸= 0 sur ]0, π/2].

Continuité en 0 : ∀x ∈]0, π/2], cos(x)− 1

sinx
=

cos(x)− 1

x

sinx

x
.

Or
cos(x)− 1

x
−−−→
x→0

0 et
sinx

x
−−−→
x→0

1 (taux d'accroissement).

Donc
cos(x)− 1

sinx
−−−→
x→0

0 = f(0), donc f est continue en 0.

Dérivabilité en 0 : ∀x ∈]0, π/2], f(x)− f(0)

x− 0
=

cos(x)− 1

x sin(x)
. Soit on utilise un encadrement de cosx− 1, soit
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on ruse pour revoir sin :
1− cosx

x sinx
=

1 + cosx

1 + cosx

1− cosx

x sinx
=

1

1 + cosx

1− cos2 x

x sinx
=

1

1 + cosx

sinx

x
−−−→
x→0

1

2
.

Finalement f est dérivable en 0 et f ′(0) = −1

2
.

Exercice B4.22 (Rolle généralisé)
Soit f : [a,+∞[→ R une fonction continue sur [a,+∞[, dérivable sur ]a,+∞[ et telle que lim

x→+∞
f(x) =

f(a).

• Si f est constante, tout c ∈ [a,+∞[ convient.

• Sinon, il existe x ∈]a,+∞[, f(x) ̸= f(a).
Soit γ strictement compris entre f(a) et f(x).
Par théorème des valeurs intermédiaires sur [a, x] d'une part et d'autre part sur [x,+∞[ (détailler la
généralisation) : il existe c1 ∈]a, x[ et c2 ∈]x,+∞[ tels que f(c1) = f(c2) = γ. On peut alors appliquer
le théorème de Rolle à f , continue sur [c1, c2] et dérivable sur ]c1, c2[.

Dans tous les cas, il existe c ∈]a,+∞[ tel que f ′(c) = 0.

Exercice B4.27

Calculer pour tout n ∈ N la dérivée n-ième de

1. Soit g : x 7→ x− 1 et h : x 7→ e−x, de classe C∞ sur R.
Pour tout k ∈ N, on a h(k) : x 7→ (−1)ke−x (récurrence).
De plus, pour tout k > 1, g(k) est la fonction nulle.

Leibniz : ∀n ∈ N, ∀x ∈ R, f (n)(x) =

n∑
k=0

(
n

k

)
g(n−k)(x)h(k)(x) = (−1)n(x−1)e−x+(−1)n−1ne−x. Donc

f (n)(x) = (−1)n(x− 1− n)e−x.

3. Soit g : x 7→ xn et h : x 7→ ex, de classe C∞ sur R.
Pour tout k ∈ N, on a h(k) : x 7→ ex.

De plus, pour tout 0 ⩽ k ⩽ n, g(k) : x 7→ n!

(n− k)!
xn−k (récurrence).

Leibniz : ∀n ∈ N, ∀x ∈ R,

f (n)(x) =

n∑
k=0

(
n

k

)
g(k)(x)h(n−k)(x)

=

(
n∑

k=0

1

k!

(
n

k

)2

xn−k

)
ex

=

(
n∑

k=0

1

(n− k)!

(
n

k

)2

xk

)
ex.

Exercice B4.28

Soit n ∈ N et f : x 7→ x2n.

D'une part, f (n)(x) =
(2n)!

n!
xn.

D'autre part, f(x) = xnxn et donc (formule de Leibniz) f (n)(x) =

n∑
k=0

(
n

k

)
n!

(n− k)!
xn−kn!

k!
xk =

n∑
k=0

(
n

k

)2

n!xn.

En évaluant en x = 1,
n∑

k=0

(
n

k

)2

=
(2n)!

(n!)2
.
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