MPSI Paul Valéry Corrigé
DEVOIR MAISON N° 11

Probléme 1

Dans ce probléme, g : RT — R désigne une fonction continue. Etant donnés a,b € R fixés, on considére
I’équation différentielle

t2y" + aty’ + by = g(t) (E)
1. Soit m € R. y : t — t™ est dérivable deux fois sur R’ et on a
vt e RY, ¢/ (t) = mt™ et y'(t) = m(m — 1)t™ 2.
Ainsi
y est solution de (Ep) <Vt e RY, t2y"(¢) +aty'(t) + by(t) = 0
& ViteRL, (m(m—1)4+am+b)t" =0
& mm—1)+am+b=0

car t"™ # 0 sur R’ . Finalement,

’t — t"™" est solution de (Ep) <= m est solution de X(X — 1) +aX +b=0.

2. Soit f: R} — R et définissons u : R — R par
Ve € R, u(x) = f(e*).

De maniére équivalente, V¢ € RY, f(t) = u(Int).
Par composition, f est deux fois dérivable sur RY si et seulement si u est deux fois dérivable sur R.
Dans ce cas, pour tout ¢t € R,

£(t) = %u’(ln Hooet f(t) = tlzu"(lnt) - tizu’(ln .

Ainsi
f est solution de B < WVt e RY, 2 f"(t) + atf'(t) + bf(t) = g(t)
& VteRL, u"(Int) + (a — 1)u'(Int) + bu(lnt) = g(t)
& VreR, W (x)+ (a — 1) (z) + bu(z) = g(e¥)

car t — Int est bijective de R’ dans R. Ainsi

[ est solution de (E) sur R} <= wu est solution de (E') sur R.

3. (a) m(m—1)+5m+4=0«< m=—2, qui est aussi 'équation caractéristique de (E').
Les solutions u de I’équation homogene associée a (E’) : u” + 4u’ + 4u = €* sont

{ZEI—>(A1’+B)€2$|A,BER}.

A+ Blnt
Ainsi, en posant = = Int, les solutions de I’équation homogeéne (Ejy) sont {t > At ot }

2 | A,BeR

1
Enfin 2 — §e“ est solution particuliére de (E'). Les solutions sont donc

t2

A+ Blnt t
{m++rl+9|ABeR}.




(b) L’équation (E') associée est u” —u' +u =e" + e ",

L’équation m(m—1)+1 = 0 a deux solutions complexes : . D’ot les solutions de ’équation

+iv3
2

N (A N /
homogeéne associée a (E') :

(ot (o (2) i (52 .

En posant z = Int, on a les solutions de ’équation homogéne.

{t — Vit (Acos <\é§1nt> + Bsin (?lnt)) } .

1 1
On cherche une solution particuliére par superposition. On obtient y,(t) = §t+ Qt_l. Finalement,

les solutions sont

2 t

{t = Vi(Acos(Fmt) + Bsin(Fmt)) + 1(t+ 1)} .

1
4 Soit f dérivable sur R’ telle que Vo € R* | f/(x) = f(;).

1 . .. .
x — — est dérivable sur R’} et & valeurs dans R, , donc par composition, f’ est dérivable sur R%

etonaVzeR:, f'(z) = ;—;f’ (i) = ;—;f (x).

Ainsi, f est solution de I'équation z2y” + y = 0, résolue précédemment.

Donc f € {x»—> \/§<ACOS (flnx) + Bsin (?lnx>> }
Soit A, B € R et f:xl—>\/§<Acos (flnx) + Bsin (?lnx))

Alors Vx € RY,

f'(z) %(Acos (@ lna?) + Bsin <§ ln:c))

_ 1
VE

+ ?(—Asin (@lnx) + B cos (‘églnx))]

f (i) = \;E (Acos (731111') — Bsin (@1nm>) .
1 A
Ona f'(z)=f (w) dés lors que { 2 2 j.e. V3B = A.

En conclusion, les solutions sont

{xHCﬁcos(@lnw—%) |CER}.
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Probléme 2

1. Le discriminant du trinéme X2 — X — 1 est A = 5. Comme A > 0,

’le trindme X2 — X — 1 admet deux racines réelles distinctes. ‘

On note p et ¢ ces deux solutions, de sorte que ¢ < ¢.
On a (somme et produit des racines d’un trinome) ’go +p=1 ‘ et ’(p(ﬁ =-1 ‘

2. Montrons que Z[p] est un sous-anneau de (R, +, x).
e Par définition de Z[y], Z[p] C R.
e Pour (a,b) = (0,0), on obtient a + by = 0, donc 0 € Z[yp)].
e Pour (a,b) = (1,0), on obtient a 4+ by = 1, donc 1 € Z[yp].
o Soit z,2’ € Z[p]. 1l existe a,b,a’,b’ € Z tels que x = a + by et 2’ = a’ + V' p. On a alors

r+2 =(a+d)+ (b+b)ep.

Comme a+a' € Zet b+ €Z, on a x+ 2’ € Z[p]. Donc Z[p] est stable par +.
e Comme ¢? = ¢ + 1,
2’ = (aa’ + bb') + (ab' + ba’ + bb)p.
Comme aa’ + bb' € Z et ab' + ba’ + bV’ € Z, on a xz’ € Z[p]. Donc Z[yp] est stable par x.
e Enfin,
= (~a) + (D).
Comme —a € Z et —b € Z, on a —x € Z[p]. Donc Z|p] est stable par passage a I'oppose.

’Z[@] est un sous-anneau de (R, +, x) ‘

3. Soit x € Z[p]. Supposons = a + by = a’ + b'p, avec a,a’, b, b’ € Z. Par différence,
a—a = —b)p.

Si b # b, alors ¢ serait rationnel. Donc b = b et a = a’. Ainsi

‘VwEZ[gp], 3! (a,b) € Z?, :c:a—i—bgo‘.

4. (a) Soit z € Z[p], avec x = a + bp. On a
N(z) = z&
= (a+ by)(a + by)
= a® +ab(p + §) + bp
=a’+ab— b € Z.

Donc ’Vm € Zly], N(z)e Z‘.

(b) Soit x,2" € Z[g]. On écrit x = a + by et ' = a’ + by, avec a,a’,b,b’ € Z. Comme ¢ et H sont
racines du trinome X2 — X — 1, on a

22’ = (ad' + bV') + (ab' + ba’ + bb')p
& x ' = (a+bp) (a +V@) = (ad +bb) + (abl + ba' + bb)¢.

Donc |zz’ = 22 |.



d.

6.

(¢) On déduit

— ~

N(zx') = (z2')(z2’) = 22’22’ = (22) (l‘,1§/> = N(z)N(a').

Donc | N(xzz') = N(z)N(2) |
Soit x € G. 1l existe y € Z[p] tel que xy = 1. On en déduit

N(z)N(y) = N(zy) = N(1) = 1.
Comme N(z), N(y) € Z, N(z) divise 1. On en déduit
N(z) e {-1,1}.

Réciproquement, soit = € Z[y] tel que N(z) € {—1,1}.
Remarquons que puisque ¢ =1 — ¢, Va,b € Z, a + bp = a+ b — bp € Z[yp)].
e Si N(xz) =1, 0on a z = 1. Comme & € Z[g], = est inversible dans Z[¢] et 271 = 7.
e Si N(z) = —1,0onaxz x (—#) = 1. Comme —& € Z[g], x est inversible dans Z[y] et 2~ = —3.

Donc

¥z € Zlg], z € G & N(x) € {~1,1}},

Comme 2 € Z[yp] et N(2) =4, 2 n’est pas inversible dans Z[y]. Donc

’Z[cp] n’est pas un corps ‘

(a) Soit a,b € Z et x = a + bp. Supposons x € H. On a alors x € G et x > 1. On en déduit que
x est inversible dans Z[p] et 0 < 27! < 1. De plus, d’aprés la question précédente, N(z) =1 ou
N(z) =-1.

e Si N(z) =1, alors 271 = &. Ainsi —1 < —&, ot 0 < z — & = b(p — ¢) et donc b > 0 car
@ < . De plus, comme ¢ X ¢ < 0, on a nécessairement ¢ > 0 et ¢ < 0. Donc 0 < a+bp < a.
e Si N(z) = —1,alors x7 ! = —&. Ainsi 1 <2 —1 =b(p — @) et donc b > 0 car p < . Comme
—1 < 2, on en déduit —1 < a+bp < a et donc 0 < a car a € Z.
Donc, dans les deux cas, |sia+bp € H, alorsa>0et b >0 ‘

(b) Tout d’abord, N(¢) = ¢ x ¢ = —1, donc ¢ € G. De plus, comme o + @ =1et » <0, p > 1.
Donc .
Montrons maintenant que ¢ est un minorant de H. Soit x € H. En particulier, x € Z[p], donc il
existe a,b € Z tels que x = a + bp. D’aprés la question précédente, a > 0 et b > 0. On en déduit
b>1carbeZ, puis a+ bp > ¢ car ¢ > 0. Donc ’gp est le plus petit élément de H ‘

(c) Soit x € H. On considére

A:{kEN*\gpkéx}.
Comme ¢ =min H, 1 € A et donc A est une partie non vide de N. De plus

1
P <ok,
Inp

N

car Inp > 0. Donc A est majoré et admet un plus grand élément p. Comme p +1 ¢ A, on a
z < P! Donc

Ve e H,Ape N o <z <Pt
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(d) On montre le résultat par double inclusion.
(G, x) est un groupe et ¢ € G. Donc Vp € N*, ¥ € G.
De plus, comme ¢ > 1, Vp € N*, ¢ > o > 1.
Donc Vp e N*, P € H, ice. {¢|peN*} C H.
Soit € H. D’aprés la question précédente, il existe p € N* tel que P < < P,
Onposealorsy:%. Onal<y<op.
Comme z € G, v € G et (G, X) est un groupe, on en déduit y € G.

Supposons y > 1. On a alors y € H et y < ¢, ce qui est impossible.
Donc nécessairement y = 1 et @ = ¢P. Ainsi H C {¢? | p € N*}.

H={¢" |peN}|

7. Commencons par vérifier que © est bien défini. Comme ¢ € G et (G, X) est un groupe, Vp € Z, ¥ € G.
De plus, comme —1 € G, V(e,p) € Uy X Z, e¢? € G. Donc © est bien défini. On doit ensuite montrer
que O est un morphisme de groupes, injectif et surjectif.

Finalement,

e Commencgons par expliciter la loi du groupe Us x Z. Il s’agit du produit cartésien des groupes
(Ug, x) et (Z,+). Donc la loi x du groupe Ug X Z est définie par

V((E,p), (6/,]?/)) € Uz X Z, (E,p) * (E/,p/) = (55/7p+p/)'

Puis

= (e¢") x (£'¢")
= 0O(e,p) x O, p').

Donc © est un morphisme de groupes.
e Montrons que Ker © = {(1,0)}. Soit (¢,p) € Uy x Z tel que O(e,p) =1, i.e. e’ =
Comme ¢ > 0, e a méme signe que €. Donc ¢ = 1. Ainsi ¢ =
Comme ¢ # 1, on en déduit plnp = 0, puis p = 0. Donc (e,p) = (1,0).
Cela montre que Ker© C {(1,0)}.
Comme (1,0) est 1’élément neutre de Uy x Z, U'inclusion réciproque est vérifiée.
Par conséquent Ker © = {(1,0)} et © est injectif.
e Montrons enfin que © est surjectif. Soit z € G. On distingue alors plusieurs cas
e Siz > 1, alors z € H et, d’aprés la question précédente, il existe p € N* tel que z = ¢F =
o(1,p).
e Si0<xz<1,alorsz ! e H et il existe p € N* tel que 7! = P, dott z = ¢ P = (1, —p).
e Siz =1, alors x = ©(1,0).
Cela prouve que Ve € G,z > 0= Ip e Zx =0(1,p). Si x <0, alors —z € G et —x > 0.
Donc il existe p € Z tel que —x = ¢P, dou x = —¢P = O(—1, p).
Comme 0 ¢ G, tous les cas possibles ont été traités. Donc O est surjectif.

Donc ’@ est un isomorphisme de groupes |.




