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Problème 1

Dans ce problème, g : R∗
+ → R désigne une fonction continue. Étant donnés a, b ∈ R �xés, on considère

l'équation di�érentielle

t2y′′ + aty′ + by = g(t) (E)

1. Soit m ∈ R. y : t 7→ tm est dérivable deux fois sur R∗
+ et on a

∀t ∈ R∗
+, y

′(t) = mtm−1 et y′′(t) = m(m− 1)tm−2.

Ainsi

y est solution de (E0) ⇔ ∀t ∈ R∗
+, t

2y′′(t) + aty′(t) + by(t) = 0

⇔ ∀t ∈ R∗
+, (m(m− 1) + am+ b) tm = 0

⇔ m(m− 1) + am+ b = 0

car tm ̸= 0 sur R∗
+. Finalement,

t 7→ tm est solution de (E0) ⇐⇒ m est solution de X(X − 1) + aX + b = 0.

2. Soit f : R∗
+ → R et dé�nissons u : R → R par

∀x ∈ R, u(x) = f(ex).

De manière équivalente, ∀t ∈ R∗
+, f(t) = u(ln t).

Par composition, f est deux fois dérivable sur R∗
+ si et seulement si u est deux fois dérivable sur R.

Dans ce cas, pour tout t ∈ R∗
+,

f ′(t) =
1

t
u′(ln t) et f ′′(t) =

1

t2
u′′(ln t)− 1

t2
u′(ln t).

Ainsi

f est solution de E ⇔ ∀t ∈ R∗
+, t

2f ′′(t) + atf ′(t) + bf(t) = g(t)

⇔ ∀t ∈ R∗
+, u

′′(ln t) + (a− 1)u′(ln t) + bu(ln t) = g(t)

⇔ ∀x ∈ R, u′′(x) + (a− 1)u′(x) + bu(x) = g(ex)

car t 7→ ln t est bijective de R∗
+ dans R. Ainsi

f est solution de (E) sur R∗
+ ⇐⇒ u est solution de (E′) sur R.

3. (a) m(m− 1) + 5m+ 4 = 0 ⇔ m = −2, qui est aussi l'équation caractéristique de (E′).
Les solutions u de l'équation homogène associée à (E′) : u′′ + 4u′ + 4u = ex sont{

x 7→ (Ax+B)e2x | A,B ∈ R
}
.

Ainsi, en posant x = ln t, les solutions de l'équation homogène (E0) sont

{
t 7→ A+B ln t

t2
| A,B ∈ R

}
.

En�n x 7→ 1

9
ex est solution particulière de (E′). Les solutions sont donc{

t 7→ A+B ln t

t2
+

t

9
| A,B ∈ R

}
.
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(b) L'équation (E′) associée est u′′ − u′ + u = ex + e−x.

L'équation m(m−1)+1 = 0 a deux solutions complexes :
1± i

√
3

2
. D'où les solutions de l'équation

homogène associée à (E′) :{
x 7→ e

1
2
x

(
A cos

(√
3

2
x

)
+B sin

(√
3

2
x

))}
.

En posant x = ln t, on a les solutions de l'équation homogène.{
t 7→

√
t

(
A cos

(√
3

2
ln t

)
+B sin

(√
3

2
ln t

))}
.

On cherche une solution particulière par superposition. On obtient yp(t) =
1

2
t+

1

2
t−1. Finalement,

les solutions sont {
t 7→

√
t
(
A cos

(√
3
2 ln t

)
+B sin

(√
3
2 ln t

))
+

1

2

(
t+

1

t

)}
.

4. Analyse Soit f dérivable sur R∗
+ telle que ∀x ∈ R∗

+, f
′(x) = f

(1
x

)
.

x 7→ 1

x
est dérivable sur R∗

+ et à valeurs dans R∗
+, donc par composition, f ′ est dérivable sur R∗

+

et on a ∀x ∈ R∗
+, f

′′(x) =
−1

x2
f ′
(
1

x

)
=

−1

x2
f (x).

Ainsi, f est solution de l'équation x2y′′ + y = 0, résolue précédemment.

Donc f ∈

{
x 7→

√
x

(
A cos

(√
3

2
lnx

)
+B sin

(√
3

2
lnx

))}
.

Synthèse Soit A,B ∈ R et f : x 7→
√
x

(
A cos

(√
3

2
lnx

)
+B sin

(√
3

2
lnx

))
.

Alors ∀x ∈ R∗
+,

f ′(x) =
1√
x

[
1

2

(
A cos

(√
3
2 lnx

)
+B sin

(√
3
2 lnx

))
+

√
3

2

(
−A sin

(√
3
2 lnx

)
+B cos

(√
3
2 lnx

))]
et

f

(
1

x

)
=

1√
x

(
A cos

(√
3
2 lnx

)
−B sin

(√
3
2 lnx

))
.

On a f ′(x) = f

(
1

x

)
dès lors que


1

2
A+

√
3

2
B = A

1

2
A+

√
3

2
B = A

,i.e.
√
3B = A.

En conclusion, les solutions sont{
x 7→ C

√
x cos

(√
3
2 lnx− π

6

)
| C ∈ R

}
.
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Problème 2

1. Le discriminant du trinôme X2 −X − 1 est ∆ = 5. Comme ∆ > 0,

le trinôme X2 −X − 1 admet deux racines réelles distinctes.

On note φ et φ̂ ces deux solutions, de sorte que φ̂ < φ.
On a (somme et produit des racines d'un trinôme) φ+ φ̂ = 1 et φφ̂ = −1 .

2. Montrons que Z[φ] est un sous-anneau de (R,+,×).

• Par dé�nition de Z[φ], Z[φ] ⊂ R.
• Pour (a, b) = (0, 0), on obtient a+ bφ = 0, donc 0 ∈ Z[φ].
• Pour (a, b) = (1, 0), on obtient a+ bφ = 1, donc 1 ∈ Z[φ].
• Soit x, x′ ∈ Z[φ]. Il existe a, b, a′, b′ ∈ Z tels que x = a+ bφ et x′ = a′ + b′φ. On a alors

x+ x′ = (a+ a′) + (b+ b′)φ.

Comme a+ a′ ∈ Z et b+ b′ ∈ Z, on a x+ x′ ∈ Z[φ]. Donc Z[φ] est stable par +.

• Comme φ2 = φ+ 1,
xx′ = (aa′ + bb′) + (ab′ + ba′ + bb′)φ.

Comme aa′ + bb′ ∈ Z et ab′ + ba′ + bb′ ∈ Z, on a xx′ ∈ Z[φ]. Donc Z[φ] est stable par ×.

• En�n,
−x = (−a) + (−b)φ.

Comme −a ∈ Z et −b ∈ Z, on a −x ∈ Z[φ]. Donc Z[φ] est stable par passage à l'opposé.

Z[φ] est un sous-anneau de (R,+,×) .

3. Soit x ∈ Z[φ]. Supposons x = a+ bφ = a′ + b′φ, avec a, a′, b, b′ ∈ Z. Par di�érence,

a− a′ = (b′ − b)φ.

Si b ̸= b′, alors φ serait rationnel. Donc b = b′ et a = a′. Ainsi

∀x ∈ Z[φ], ∃! (a, b) ∈ Z2, x = a+ bφ .

4. (a) Soit x ∈ Z[φ], avec x = a+ bφ. On a

N(x) = xx̂

= (a+ bφ)(a+ bφ̂)

= a2 + ab(φ+ φ̂) + b2φφ̂

= a2 + ab− b2 ∈ Z.

Donc ∀x ∈ Z[φ], N(x) ∈ Z .

(b) Soit x, x′ ∈ Z[φ]. On écrit x = a + bφ et x′ = a′ + b′φ, avec a, a′, b, b′ ∈ Z. Comme φ et φ̂ sont
racines du trinôme X2 −X − 1, on a

x̂x′ = (aa′ + bb′) + (ab′ + ba′ + bb′)φ̂

x̂× x̂′ = (a+ bφ̂)
(
a′ + b′φ̂

)
= (aa′ + bb′) + (ab′ + ba′ + bb′)φ̂.

Donc x̂x′ = x̂x̂′ .
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(c) On déduit

N(xx′) = (xx′)(̂xx′) = xx′x̂x̂′ = (xx̂)
(
x′x̂′

)
= N(x)N(x′).

Donc N(xx′) = N(x)N(x′) .

5. Soit x ∈ G. Il existe y ∈ Z[φ] tel que xy = 1. On en déduit

N(x)N(y) = N(xy) = N(1) = 1.

Comme N(x), N(y) ∈ Z, N(x) divise 1. On en déduit

N(x) ∈ {−1, 1}.

Réciproquement, soit x ∈ Z[φ] tel que N(x) ∈ {−1, 1}.
Remarquons que puisque φ̂ = 1− φ, ∀a, b ∈ Z, a+ bφ̂ = a+ b− bφ ∈ Z[φ].

• Si N(x) = 1, on a xx̂ = 1. Comme x̂ ∈ Z[φ], x est inversible dans Z[φ] et x−1 = x̂.

• Si N(x) = −1, on a x× (−x̂) = 1. Comme −x̂ ∈ Z[φ], x est inversible dans Z[φ] et x−1 = −x̂.

Donc
∀x ∈ Z[φ], x ∈ G ⇔ N(x) ∈ {−1, 1} .

Comme 2 ∈ Z[φ] et N(2) = 4, 2 n'est pas inversible dans Z[φ]. Donc

Z[φ] n'est pas un corps .

6. (a) Soit a, b ∈ Z et x = a + bφ. Supposons x ∈ H. On a alors x ∈ G et x > 1. On en déduit que
x est inversible dans Z[φ] et 0 < x−1 < 1. De plus, d'après la question précédente, N(x) = 1 ou
N(x) = −1.

• Si N(x) = 1, alors x−1 = x̂. Ainsi −1 < −x̂, d'où 0 < x − x̂ = b (φ− φ̂) et donc b > 0 car
φ̂ < φ. De plus, comme φ× φ̂ < 0, on a nécessairement φ > 0 et φ̂ < 0. Donc 0 < a+ bφ̂ < a.

• Si N(x) = −1, alors x−1 = −x̂. Ainsi 1 < x− x̂ = b (φ− φ̂) et donc b > 0 car φ̂ < φ. Comme
−1 < x̂, on en déduit −1 < a+ bφ̂ < a et donc 0 ⩽ a car a ∈ Z.

Donc, dans les deux cas, si a+ bφ ∈ H, alors a ⩾ 0 et b > 0 .

(b) Tout d'abord, N(φ) = φ× φ̂ = −1, donc φ ∈ G. De plus, comme φ+ φ̂ = 1 et φ̂ < 0, φ > 1.
Donc φ ∈ H .
Montrons maintenant que φ est un minorant de H. Soit x ∈ H. En particulier, x ∈ Z[φ], donc il
existe a, b ∈ Z tels que x = a+ bφ. D'après la question précédente, a ⩾ 0 et b > 0. On en déduit
b ⩾ 1 car b ∈ Z, puis a+ bφ ≥ φ car φ > 0. Donc φ est le plus petit élément de H .

(c) Soit x ∈ H. On considère

A =
{
k ∈ N∗ | φk ⩽ x

}
.

Comme φ = minH, 1 ∈ A et donc A est une partie non vide de N. De plus

φk ⩽ x ⇔ k ⩽
lnx

lnφ
,

car lnφ > 0. Donc A est majoré et admet un plus grand élément p. Comme p + 1 /∈ A, on a
x < φp+1. Donc

∀x ∈ H, ∃! p ∈ N∗ φp ⩽ x < φp+1 .
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(d) On montre le résultat par double inclusion.

⊃ (G,×) est un groupe et φ ∈ G. Donc ∀p ∈ N∗, φp ∈ G.
De plus, comme φ > 1, ∀p ∈ N∗, φp ≥ φ > 1.
Donc ∀p ∈ N∗, φp ∈ H, i.e. {φp | p ∈ N∗} ⊂ H.

⊂ Soit x ∈ H. D'après la question précédente, il existe p ∈ N∗ tel que φp ⩽ x < φp+1.

On pose alors y =
x

φp
. On a 1 ⩽ y < φ.

Comme x ∈ G, φ ∈ G et (G,×) est un groupe, on en déduit y ∈ G.
Supposons y > 1. On a alors y ∈ H et y < φ, ce qui est impossible.
Donc nécessairement y = 1 et x = φp. Ainsi H ⊂ {φp | p ∈ N∗}.

Finalement, H = {φp | p ∈ N∗} .

7. Commençons par véri�er que Θ est bien dé�ni. Comme φ ∈ G et (G,×) est un groupe, ∀p ∈ Z, φp ∈ G.
De plus, comme −1 ∈ G, ∀(ε, p) ∈ U2 × Z, εφp ∈ G. Donc Θ est bien dé�ni. On doit ensuite montrer
que Θ est un morphisme de groupes, injectif et surjectif.

• Commençons par expliciter la loi du groupe U2 × Z. Il s'agit du produit cartésien des groupes
(U2,×) et (Z,+). Donc la loi ⋆ du groupe U2 × Z est dé�nie par

∀((ε, p), (ε′, p′)) ∈ U2 × Z, (ε, p) ⋆ (ε′, p′) = (εε′, p+ p′).

Puis

Θ((ε, p) ⋆ (ε′, p′)) = Θ(εε′, p+ p′)

= εε′φp+p′

= (εφp)× (ε′φp′)

= Θ(ε, p)×Θ(ε′, p′).

Donc Θ est un morphisme de groupes.

• Montrons que KerΘ = {(1, 0)}. Soit (ε, p) ∈ U2 × Z tel que Θ(ε, p) = 1, i.e. εφp = 1.
Comme φ > 0, εφp a même signe que ε. Donc ε = 1. Ainsi φp = 1.
Comme φ ̸= 1, on en déduit p lnφ = 0, puis p = 0. Donc (ε, p) = (1, 0).
Cela montre que KerΘ ⊂ {(1, 0)}.
Comme (1, 0) est l'élément neutre de U2 × Z, l'inclusion réciproque est véri�ée.
Par conséquent KerΘ = {(1, 0)} et Θ est injectif.

• Montrons en�n que Θ est surjectif. Soit x ∈ G. On distingue alors plusieurs cas

• Si x > 1, alors x ∈ H et, d'après la question précédente, il existe p ∈ N∗ tel que x = φp =
Θ(1, p).

• Si 0 < x < 1, alors x−1 ∈ H et il existe p ∈ N∗ tel que x−1 = φp, d'où x = φ−p = Θ(1,−p).

• Si x = 1, alors x = Θ(1, 0).

Cela prouve que ∀x ∈ G, x > 0 ⇒ ∃p ∈ Z x = Θ(1, p). Si x < 0, alors −x ∈ G et −x > 0.
Donc il existe p ∈ Z tel que −x = φp, d'où x = −φp = Θ(−1, p).
Comme 0 /∈ G, tous les cas possibles ont été traités. Donc Θ est surjectif.

Donc Θ est un isomorphisme de groupes .
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