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Les résultats devront être encadrés .

Si le candidat repère ce qui lui semble être une erreur d'énoncé, il l'indique sur sa copie et

poursuit en expliquant les initiatives qu'il a été amené à prendre.

Problème 1

Notation. Dans la seconde partie du problème, étant donnée une fonction réelle u, dé�nie sur un domaine
D, à valeurs dans une partie majorée de R, on note

sup
x∈D

u(x) = sup ({u(x) | x ∈ D}) = sup (u(D)) .

A Égalité de Taylor-Lagrange

Dans cette partie, on considère deux réels a et b tels que a < b, n ∈ N et une fonction f : [a, b] → R de
classe Cn. On suppose de plus que f (n) est dérivable sur ]a, b[ et on note f (n+1) sa dérivée sur cet intervalle.

L'objectif de cette partie est de démontrer l'existence d'un réel c ∈ ]a, b[ tel que

f(b) =
n∑

k=0

f (k)(a)

k!
(b− a)k +

f (n+1)(c)

(n+ 1)!
(b− a)n+1.

Ce résultat est l'égalité de Taylor-Lagrange.

1. À quel théorème correspond l'égalité de Taylor-Lagrange lorsque n = 0 ?

On revient au cas général. Pour tout λ ∈ R, on considère gλ : [a, b] → R dé�nie par

∀x ∈ [a, b] , gλ(x) = f(b)−
n∑

k=0

f (k)(x)

k!
(b− x)k +

λ

(n+ 1)!
(b− x)n+1.

2. Soit λ ∈ R. Montrer que gλ est continue sur [a, b], dérivable sur ]a, b[ et calculer g′λ(x) pour tout
x ∈ ]a, b[.

3. Montrer qu'il existe µ ∈ R et c ∈ ]a, b[ tels que gµ(a) = 0 et g′µ(c) = 0.

4. Conclure.

B Inégalité de Kolmogorov

Dans cette partie, on considère a ∈ R et une fonction f : ]a,+∞[ → R de classe C2. On suppose que f et
f ′′ sont bornées sur ]a,+∞[ et on pose

M0 = sup
x∈]a,+∞[

|f(x)| et M2 = sup
x∈]a,+∞[

|f ′′(x)|.

L'objectif de cette partie est de démontrer que f ′ est bornée sur ]a,+∞[ et de montrer une inégalité de
Kolmogorov

M1 ⩽ 2
√

M0M2, avec M1 = sup
x∈]a,+∞[

|f ′(x)|.
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5. Soit x0 ∈ ]a,+∞[ et h > 0. On pose x = x0 + h.

(a) Montrer qu'il existe c ∈ ]x0, x[ tel que

f(x) = f(x0) + f ′(x0)h+ f ′′(c)
h2

2
.

(b) En déduire que

|f ′(x0)| ⩽
2M0

h
+

hM2

2
.

6. En déduire que f ′ est bornée sur ]a,+∞[. On pose alors M1 = sup
x∈]a,+∞[

|f ′(x)|.

7. Soit A,B > 0. Étudier les variations de la fonction φ : h 7→ 2A

h
+

hB

2
sur ]0,+∞[.

8. Conclure.

Problème 2

La chocolaterie Diophantaisie fabrique des tablettes constituées de carreaux, des petits carrés de chocolat
identiques, assemblés pour former de grandes plaques carrées. Elle souhaite proposer deux formats de plaques,
un format raisonnable et un format plus gourmand, contenant trois fois plus de carreaux que le plus petit.

Un ingénieur de la �rme montre que cette exigence est mathématiquement irréalisable : si les deux formats
de plaques sont constitués de petits carreaux identiques, le rapport de leurs côtés doit être

√
3, ce qui est

impossible puisque
√
3 est irrationnel.

Il observe toutefois qu'en introduisant une petite tolérance (un carreau de plus ou de moins, ce qui est
sans impact perceptible pour le consommateur), le problème devient soluble. Les dirigeants acceptent alors
de produire des plaques contenant respectivement n2 et m2 carreaux, véri�ant

n2 = 3m2 ± 1.

A Friandise

1. Montrer que
√
3 est irrationnel. (on pourra éventuellement admettre ce résultat pour la suite)

2. En considérant les congruences modulo 4, montrer que l'équation n2 = 3m2 − 1 n'a aucune solution
entière.

B Gourmandise

On considère l'ensemble noté Z
[√

3
]
, dé�ni par

Z
[√

3
]
=

{
x ∈ R | ∃(a, b) ∈ Z2, x = a+ b

√
3
}
.

3. Montrer que Z
[√

3
]
est un anneau, muni des lois + et × (addition et multiplication) usuelles.

4. Soit x ∈ Z
[√

3
]
. Montrer qu'il existe un unique couple (a, b) ∈ Z2 tel que x = a+ b

√
3.

5. Soit x = a + b
√
3, avec (a, b) ∈ Z2. L'unicité du couple (a, b) nous permet de dé�nir x = a − b

√
3 et

N(x) = xx.
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(a) Montrer que ∀x ∈ Z
[√

3
]
, N(x) ∈ Z.

(b) Montrer que ∀x1, x2 ∈ Z
[√

3
]
, x1 × x2 = x1 × x2.

(c) En déduire que ∀x1, x2 ∈ Z
[√

3
]
, N (x1x2) = N (x1)N (x2).

On note G = Z
[√

3
]×

le groupe des éléments de Z
[√

3
]
, inversibles pour la loi ×.

6. (a) Soit x ∈ Z
[√

3
]
. Montrer que x ∈ G si et seulement si N(x) = 1.

Indication. Pour l'implication directe, on pourra commencer par montrer que si x ∈ G, alors
N(x) = ±1.

(b) Z
[√

3
]
est-il un corps ?

On pose x0 = 2 +
√
3 et H = G ∩ ]1,+∞[.

7. (a) Soit a, b ∈ Z. On pose x = a+ b
√
3. Montrer que si x ∈ H, alors a ⩾ 2 et b ⩾ 1.

Indication. On pourra montrer tout d'abord 0 < x < 1 < x, puis b ⩾ 1 et en�n a ⩾ 2.

(b) Montrer que x0 est le plus petit élément de H.

(c) Soit x ∈ H. Montrer qu'il existe p ∈ N∗ tel que xp0 ⩽ x < xp+1
0 .

Indication. On pourra considérer l'ensemble A =
{
k ∈ N∗ | xk0 ⩽ x

}
.

(d) Montrer que H = {xp0 | p ∈ N∗}.
Indication. Pour l'inclusion directe, on pourra considérer un élément x ∈ H, poser y = x×x−p

0 ,
avec p ∈ N∗ dé�ni par la question précédente et montrez qu'on a nécessairement y = 1.

8. Montrer que
φ : Z× Z× −→ G

(p, ε) 7−→ εxp0

est un isomorphisme de groupes.

C Dessert

On cherche les solutions (n,m) ∈ (N∗)2 de l'équation

(E) : n2 − 3m2 = 1.

Soit n,m ∈ N∗.

9. Montrer que (n,m) est solution de (E) si et seulement si n+m
√
3 ∈ H.

10. Pour tout p ∈ N∗, on note ap et bp les éléments de N∗ tels que

xp0 = ap + bp
√
3.

Pour tout p ∈ N∗, exprimer ap+1 et bp+1 en fonction de ap et bp.

11. Déterminer toutes les solutions de (E) véri�ant 10 ⩽ m ⩽ 100. En déduire le nombre de petits carrés
dans les grandes plaques.
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