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Devoir surveillé no 4

Problème 1

1. Pour n = 0, l'égalité de Taylor-Lagrange montre que si f : [a, b] → R est continue et dérivable sur ]a, b[,

alors il existe c ∈ ]a, b[ tel que f(b) = f(a) + f ′(c)(b− a). C'est l'égalité des accroissements �nis .

2. Soit λ ∈ R.
• f est de classe Cn sur [a, b], donc pour tout k ∈ J0, nK, f (k) est continue sur [a, b]. De plus, pour

tout k ∈ J0, n+ 1K, la fonction x 7→ (b− x)k est continue. Donc gλ est continue sur [a, b] en tant

que somme et produit de fonctions continues.

• D'autre part, f est de classe Cn sur [a, b], donc pour tout k ∈ J0, n− 1K, f (k) est dérivable sur [a, b].
De plus, par hypothèse, f (n) est dérivable sur ]a, b[. En�n, pour tout k ∈ J0, n+ 1K, la fonction

x 7→ (b − x)k est dérivable. Donc gλ est dérivable sur ]a, b[ en tant que somme et produit de

fonctions dérivables.

gλ est continue sur [a, b] et dérivable sur ]a, b[.

Soit x ∈ ]a, b[. On a (en sortant le premier terme de la somme)

g′λ(x) = −f ′(x)−
n∑

k=1

(
f (k+1)(x)

k!
(b− x)k − f (k)(x)

(k − 1)!
(b− x)k−1

)
− λ

n!
(b− x)n.

On reconnaît une somme télescopique. Ainsi

g′λ(x) = −f ′(x)−

(
f (n+1)(x)

n!
(b− x)n − f ′(x)

)
− λ

n!
(b− x)n

g′λ(x) = −λ+ f (n+1)(x)

n!
(b− x)n.

3. Soit λ ∈ R. On a gλ(a) = A+ λB, avec A,B ∈ R qui ne dépendent pas de λ. Plus explicitement,

A = f(b)−
n∑

k=0

f (k)(a)

k!
(b− a)k et B =

(b− a)n+1

(n+ 1)!
.

Comme a < b, B ̸= 0 et donc gλ(a) = 0 ⇔ λ = −A

B
. Autrement dit, l'équation gλ(a) = 0 d'inconnue

λ admet une unique solution sur R.

Il existe µ ∈ R tel que gµ(a) = 0.

D'après ce qui précède, gµ(a) = 0. Or on a ∀λ ∈ R, gλ(b) = 0. En particulier gµ(b) = 0. Comme gµ
est continue sur [a, b] et dérivable sur ]a, b[, il existe c ∈ ]a, b[ tel que g′µ(c) = 0, d'après le théorème de

Rolle.

Il existe c ∈ ]a, b[ tel que g′µ(c) = 0.
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4. D'après les questions précédentes, il existe µ ∈ R et c ∈ ]a, b[ tels que gµ(a) = 0 et g′µ(c) = 0. D'après
l'expression de g′µ, on en déduit

0 = g′µ(c) = −µ+ f (n+1)(c)

n!
(b− c)n.

Comme b− c ̸= 0, on en déduit µ = −f (n+1)(c) et donc

0 = gµ(a) = f(b)−
n∑

k=0

f (k)(a)

k!
(b− a)k − f (n+1)(c)

(n+ 1)!
(b− a)n+1.

Il existe c ∈ ]a, b[ tel que f(b) =
n∑

k=0

f (k)(a)

k!
(b− a)k +

f (n+1)(c)

(n+ 1)!
(b− a)n+1 .

5. (a) Soit x0 ∈ ]a,+∞[ et h > 0. On pose x = x0 + h. Par hypothèse, f est C2 sur ]a,+∞[. Donc f
est C1 sur [x0, x] et f

′ est dérivable sur ]x0, x[. D'après l'égalité de Taylor-Lagrange, il existe alors
c ∈ ]x0, x[ tel que

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(c)

2
(x− x0)

2.

Il existe c ∈ ]x0, x[ tel que f(x) = f(x0) + f ′(x0)h+ f ′′(c)
h2

2
.

(b) D'après ce qui précède,

f ′(x0) =
f(x)− f(x0)

h
− f ′′(c)h

2
.

Ainsi, d'après l'inégalité triangulaire,

|f ′(x0)| ⩽
|f(x)− f(x0)|

h
+

|f ′′(c)|h
2

⩽
|f(x)|+ |f(x0)|

h
+

|f ′′(c)|h
2

.

Par dé�nition de M0 et M2, on a |f(x)| ⩽ M0, |f(x0)| ⩽ M0 et |f ′′(c)| ⩽ M2.

|f ′(x0)| ⩽
2M0

h
+

hM2

2
.

6. On a montré

∀x0 ∈ ]a,+∞[ , ∀h > 0, |f ′(x0)| ⩽
2M0

h
+

hM2

2
.

En particulier, pour h = 1,

∀x0 ∈ ]a,+∞[ , |f ′(x0)| ⩽ 2M0 +
M2

2
.

f ′ est bornée sur ]a,+∞[ .

7. Tout d'abord, φ est une fraction rationnelle, donc φ est dérivable sur ]0,+∞[ et

∀h > 0, φ′(h) = −2A

h2
+

B

2
=

Bh2 − 4A

2h2
.

Comme B > 0 et A > 0,

∀h > 0, φ′(h) = 0 ⇔ h = 2

√
A

B
.

On a alors le tableau de variations suivant.
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h 0 2
√

A
B

+∞

φ′(h) − 0 +

φ(h)
+∞

2
√
AB

+∞

8. Soit h > 0. On a montré

∀x0 ∈ ]a,+∞[ , |f ′(x0)| ⩽
2M0

h
+

hM2

2
.

On en déduit que
2M0

h
+

hM2

2
est un majorant de

{
|f ′(x)| | x ∈ ]a,+∞[

}
. Donc

∀h > 0, M1 ⩽
2M0

h
+

hM2

2
.

On distingue plusieurs cas.

• Si M0 = 0, alors f est nulle et M1 = 0.

• Si M2 = 0, alors ∀h > 0, M1 ⩽
2M0

h
, d'où M1 = 0.

• Si M0 > 0 et M2 > 0, pour h = 2

√
M0

M2
, on obtient M1 ⩽ 2

√
M0M2.

M1 ⩽ 2
√
M0M2 .

Problème 2

1. On raisonne par l'absurde et on suppose que
√
3 est rationnel. Il existe alors a, b ∈ N∗ tels que

√
3 =

a

b
et a ∧ b = 1. On en déduit a2 = 3b2. Ainsi 3 | a2, et donc 3 | a car 3 est un nombre premier. Il existe

alors a′ ∈ N∗ tel que a = 3a′, ce qui implique 3a′2 = b2. De la même manière, on en déduit 3 | b2 puis

3 | b. On a alors 3 | a et 3 | b, ce qui contredit le fait que a et b sont premiers entre eux. Donc

√
3 est irrationnel .

2. Soit a ∈ Z et r le reste de la division euclidienne de a par 4. On a alors a ≡ r [4] et r ∈ {0, 1, 2, 3}. On
en déduit a2 ≡ r2 [4]. Et comme 02 ≡ 22 ≡ 0 [4] et 12 ≡ 32 ≡ 1 [4], a2 est congru à 0 ou à 1 modulo 4.

Tout carré de nombre entier est congru à 0 ou à 1 modulo 4 .

Supposons que (n,m) ∈ Z2 véri�e n2 = 3m2 − 1.

• Si m2 ≡ 0 [4], alors n2 ≡ −1 ≡ 3 [4].

• Si m2 ≡ 1 [4], alors n2 ≡ 2 [4].

Dans tous les cas, cela contredit le résultat précédent. Donc

l'équation n2 = 3m2 − 1 n'a aucune solution entière .

3. Montrons que Z
[√

3
]
est un sous-anneau de (R,+,×).
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• Par dé�nition de Z
[√

3
]
, on a Z

[√
3
]
⊂ R.

• On a 0 = a+ b
√
3 pour (a, b) = (0, 0) et 1 = a+ b

√
3 pour (a, b) = (1, 0). Donc 0, 1 ∈ Z

[√
3
]
.

• Soit x1, x2 ∈ Z
[√

3
]
. Il existe a1, b1, a2, b2 ∈ Z tels que x1 = a1 + b1

√
3 et x2 = a2 + b2

√
3. On a

alors

x1 + x2 = (a1 + a2)︸ ︷︷ ︸
∈Z

+(b1 + b2)︸ ︷︷ ︸
∈Z

√
3,

x1 × x2 = (a1a2 + 3b1b2)︸ ︷︷ ︸
∈Z

+(a1b2 + a2b1)︸ ︷︷ ︸
∈Z

√
3.

Ainsi x1 + x2 ∈ Z
[√

3
]
et x1 × x2 ∈ Z

[√
3
]
. Donc Z

[√
3
]
est stable par + et ×.

• Soit x ∈ Z
[√

3
]
. Il existe a, b ∈ Z tels que x = a+ b

√
3. On a alors −x = (−a)+ (−b)

√
3. Comme

−a ∈ Z et −b ∈ Z, −x ∈ Z
[√

3
]
. Donc Z

[√
3
]
est stable par passage à l'opposé.

Z
[√

3
]
est un sous-anneau de (R,+,×).

4. Soit x ∈ Z
[√

3
]
. L'existence de a, b ∈ Z tels que x = a + b

√
3 découle de la dé�nition de Z

[√
3
]
.

Montrons l'unicité du couple (a, b).

Supposons que x = a1 + b1
√
3 = a2 + b2

√
3, avec a1, a2, b1, b2 ∈ Z. On a alors, par di�érence, a1 − a2 =

(b2 − b1)
√
3. Si b2 ̸= b1, alors

√
3 =

a1 − a2
b2 − b1

. Ainsi
√
3 ∈ Q, ce qui est faux. Donc nécessairement

b1 = b2, puis a1 = a2.

∀x ∈ Z
[√

3
]
, ∃! (a, b) ∈ Z2 tel que x = a+ b

√
3 .

5. (a) Soit x ∈ Z
[√

3
]
. On écrit x = a+ b

√
3, avec (a, b) ∈ Z2. On a

N(x) = xx = (a+ b
√
3)(a− b

√
3) = a2 − 3b2 ∈ Z.

Donc ∀x ∈ Z
[√

3
]
, N(x) ∈ Z .

(b) Soit x1, x2 ∈ Z
[√

3
]
. On écrit x1 = a1 + b1

√
3 et x2 = a2 + b2

√
3, avec a1, a2, b1, b2 ∈ Z. On a

x1 × x2 = (a1a2 + 3b1b2)− (a1b2 + a2b1)
√
3,

x1 × x2 = (a1a2 + 3b1b2)− (a1b2 + a2b1)
√
3.

Donc ∀x1, x2 ∈ Z
[√

3
]
, x1 × x2 = x1 × x2 .

(c) Soit x1, x2 ∈ Z
[√

3
]
. On a, d'après la question précédente,

N(x1x2) = x1x2 × x1x2

= x1 × x2 × x1 × x2

= (x1x1)(x2x2),

N(x1x2) = N(x1)N(x2) .
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6. (a) Soit x ∈ Z
[√

3
]
. Il existe a, b ∈ Z tels que x = a+ b

√
3.

⇒ Supposons x ∈ G. Il existe alors y ∈ Z
[√

3
]
tel que xy = 1. On en déduit N(x)N(y) =

N(xy) = N(1) = 1. Comme N(x), N(y) ∈ Z, N(x) divise 1. Donc N(x) = ±1. D'autre part,

N(x) = a2−3b2. Or, d'après la question 2, l'équation n2−3m2 = −1 n'admet aucune solution

entière. Donc N(x) ̸= −1 et N(x) = 1.

⇐ Supposons N(x) = 1. On a alors xx = 1. Ainsi, comme x ∈ Z
[√

3
]
, x est inversible dans

Z
[√

3
]
et x−1 = x. Donc x ∈ G.

Donc ∀x ∈ Z
[√

3
]
, x ∈ G ⇔ N(x) = 1 .

(b) On a 2 ∈ Z
[√

3
]
, 2 ̸= 0 et N(2) = 4 ̸= 1. Donc 2 est un élément de Z

[√
3
]
non nul et non

inversible. Donc Z
[√

3
]
n'est pas un corps .

7. (a) Supposons x = a+ b
√
3 ∈ H.

• On a en particulier x ∈ G, donc, d'après la question 6a, N(x) = xx = 1.

• On a aussi x > 1, donc 0 < x−1 < 1 < x. Or, d'après ce qui précède, x−1 = x. Donc
0 < x < 1 < x.

• On en déduit x− x > 0. Or x− x = 2b
√
3. On en déduit b > 0, puis b ⩾ 1 car b ∈ Z.

• En�n, comme x > 0, a > b
√
3 > b ⩾ 1. Donc a > 1, puis a ⩾ 2 car a ∈ Z.

Si x = a+ b
√
3 ∈ H, alors a ⩾ 2 et b ⩾ 1 .

(b) Montrons x0 ∈ H et ∀x ∈ H, x ⩾ x0.

• On a N(x0) = 22 − 3× 12 = 1, donc x0 ∈ G. De plus, x0 > 1, donc x0 ∈ H.

• Soit x ∈ H. Il existe a, b ∈ Z tels que x = a+ b
√
3. D'après la question précédente, a ⩾ 2 et

b ⩾ 1. Donc x = a+ b
√
3 ⩾ 2 +

√
3 = x0.

Donc

x0 est le plus petit élément de H .

(c) Soit x ∈ H. On considère A =
{
k ∈ N∗ | xk0 ⩽ x

}
.

• A ⊂ N par dé�nition de A.

• Comme x ∈ H et x0 = minH, x10 ⩽ x. Donc 1 ∈ A et A ̸= ∅.
• Soit k ∈ A. Comme x0 ⩾ 2, on a k ⩽ 2k ⩽ xk0 ⩽ x ⩽ ⌊x⌋+ 1. Donc A est majoré dans N.

A admet donc un plus grand élément p. En particulier, p ∈ A et p+ 1 /∈ A, donc xp0 ⩽ x < xp+1
0 .

Donc

∀x ∈ H, ∃ p ∈ N∗ tel que xp0 ⩽ x < xp+1
0 .

(d) On montre le résultat par double inclusion.

⊃ (G,×) est un groupe et x0 ∈ G. Donc ∀p ∈ N∗, xp0 ∈ G. De plus, comme x0 > 1, ∀p ∈
N∗, xp0 ⩾ x0 > 1. Donc ∀p ∈ N∗, xp0 ∈ H, et cela montre

{xp0 | p ∈ N∗} ⊂ H.
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⊂ Soit x ∈ H. D'après la question précédente, il existe p ∈ N∗ tel que xp0 ⩽ x < xp+1
0 . Posons

y = x× x−p
0 .

• Comme (G,×) est un groupe et x, x0 ∈ G, on en déduit y ∈ G.

• Par dé�nition de y, on a 1 ⩽ y < x0. En particulier, y ∈ G et y < x0 = minH, donc

y /∈ H. Ainsi, d'après la dé�nition de H, y ⩽ 1.

Finalement, y = 1 et x = xp0. Donc

H ⊂ {xp0 | p ∈ N∗} .

Finalement, H = {xp0 | p ∈ N∗} .

8. Commençons par véri�er que φ est bien dé�nie. Comme x0 ∈ G et (G,×) est un groupe, ∀p ∈ Z, xp0 ∈ G.

De plus, comme −1 ∈ G, ∀(p, ε) ∈ Z × Z×, εxp0 ∈ G. Donc φ est bien dé�nie. On montre ensuite que

φ est un morphisme de groupes, injectif et surjectif.

• Commençons par expliciter la loi du groupe Z × Z×. Il s'agit du produit cartésien des groupes

(Z,+) et (Z×,×). La loi ⋆ est dé�nie par

∀((p, ε), (p′, ε′)) ∈ (Z× Z×)2, (p, ε) ⋆ (p′, ε′) = (p+ p′, εε′).

On véri�e alors que φ est un morphisme de groupes

φ((p, ε) ⋆ (p′, ε′)) = φ(p+ p′, εε′)

= εε′xp+p′

0

= (εxp0)(ε
′xp

′

0 ).

• Montrons que Kerφ = {(0, 1)}. Soit (p, ε) ∈ Z × Z× tel que φ(p, ε) = 1. Alors εxp0 = 1. Comme

x0 > 0, εxp0 a le même signe que ε, donc ε = 1. Ainsi xp0 = 1. Comme x0 ̸= 1, on en déduit p = 0.
Donc (p, ε) = (0, 1), ce qui montre que φ est injective.

• Montrons en�n que φ est surjective. Soit x ∈ G.

➢ Si x > 1, alors x ∈ H et il existe p ∈ N∗ tel que x = xp0 = φ(p, 1).

➢ Si 0 < x < 1, alors x−1 ∈ H et il existe p ∈ N∗ tel que x−1 = xp0, d'où x = φ(−p, 1).

➢ Si x = 1, alors x = φ(0, 1).

Si x < 0, alors −x ∈ G et −x > 0, donc −x = φ(p, 1) pour un certain p ∈ Z, d'où x = φ(p,−1).
Comme 0 /∈ G, tous les cas sont traités. Ainsi φ est surjective.

Donc φ est un isomorphisme de groupes .

9. Soit (n,m) ∈ (N∗)2. On pose x = n+m
√
3. Comme n > 0 et m > 0, x > 1. De plus,

(n,m) solution de (E) ⇔ N(x) = 1 ⇔ x ∈ G.

Et comme x > 1, x ∈ G ⇔ x ∈ H. Donc

(n,m) est solution de (E) si et seulement si n+m
√
3 ∈ H .

10. Soit p ∈ N∗. On a

ap+1 + bp+1

√
3 = xp+1

0 = xp0x0 = (ap + bp
√
3)(2 +

√
3) = (2ap + 3bp) + (ap + 2bp)

√
3.

On en déduit, d'après la question 4,

∀p ∈ N∗, ap+1 = 2ap + 3bp et bp+1 = ap + 2bp .

6



11. D'après ce qui précède, les solutions de (E) sont de la forme ap + bp
√
3, avec p ∈ N∗. Il su�t donc de

déterminer les valeurs de p telles que 10 ⩽ bp ⩽ 100. Or, comme ∀p ∈ N∗, ap > 0 et bp > 0, la suite

(bp)p∈N∗ est strictement croissante. Après calculs, on obtient

(a1, b1) = (2, 1), (a2, b2) = (7, 4), (a3, b3) = (26, 15), (a4, b4) = (97, 56), (a5, b5) = (362, 209).

Donc les seuls couples (n,m) ∈ (N∗)2 solutions de (E) véri�ant 10 ⩽ m ⩽ 100 sont (26, 15) et (97, 56).

Les grandes plaques contiendront donc 262 = 676 ou 972 = 9409 chocolats .
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