MPSI Paul Valéry Corrigé
DEVOIR SURVEILLE N° 4

Probléme 1

1. Pour n = 0, l’égalité de Taylor-Lagrange montre que si f : [a,b] — R est continue et dérivable sur ]a, b],
alors il existe ¢ € ]a, b[ tel que f(b) = f(a) + f'(c)(b—a). Cest
2. Soit A € R.

e f est de classe C" sur [a, b], donc pour tout k € [0, n], %) est continue sur [a, b]. De plus, pour
tout k € [0,n + 1], la fonction = — (b — z)* est continue. Donc gy est continue sur [a,b] en tant
que somme et produit de fonctions continues.

Iégalité des accroissements finis |

e D’autre part, f est de classe C" sur [a, b], donc pour tout k € [0,n — 1], ) est dérivable sur [a, b].
De plus, par hypothése, f™ est dérivable sur la,b]. Enfin, pour tout k£ € [0,n + 1], la fonction
x = (b— m)k est dérivable. Donc gy est dérivable sur |a,b| en tant que somme et produit de
fonctions dérivables.

’gA est continue sur [a, b] et dérivable sur ]a, b[‘

Soit x € |a,b[. On a (en sortant le premier terme de la somme)

n (D) (®)(z
hw)=—f(0) -3 (m<b A x>’“> RV

k!

On reconnait une somme télescopique. Ainsi

(n+1) (
h(x) = ~F'(@) - (W(b— oy - f/(:r)> -y
() (5
() = 2L gy

3. Soit A € R. On a g\(a) = A+ AB, avec A, B € R qui ne dépendent pas de A. Plus explicitement,

_ a)n-i—l

_ =~ ¥ (a) _(®
A_f(b)—kzo o (b—a)k et B_m.

A
Comme a < b, B # 0 et donc gy(a) =0 A = 5 Autrement dit, I’équation gy(a) = 0 d’inconnue

A admet une unique solution sur R.

Il existe ¢ € R tel que g,(a) = 0.

D’aprés ce qui précede, gu(a) = 0. Or on a VA € R, gx(b) = 0. En particulier g,(b) = 0. Comme g,
est continue sur [a, b] et dérivable sur ]a,b], il existe ¢ € |a, b tel que gL(c) = 0, d’aprés le théoréme de
Rolle.

Tl existe ¢ € ]a, b[ tel que g,,(c) = 0.




4. D’apreés les questions précédentes, il existe p € R et ¢ € ]a, b] tels que g,(a) =0 et gL(c) = 0. D’aprés
I’expression de g:“ on en déduit

A ()

0=g,(c) = —

u (b—o)".
Comme b— ¢ # 0, on en déduit = —f™+(¢) et donc

k(g (n+1) (¢
0=gula) = 10) - > T Dot - £ gy
k=0

(n+1)!
: /M) e, S nt1
Il existe ¢ € ]a, b[ tel que f(b) = 2 I (b—a)®+ m(b —a)"t|

5. (a) Soit z¢ € ]a,+oo[ et h > 0. On pose = z¢ + h. Par hypothése, f est C? sur a, +oo[. Donc f
est C! sur [0, 2] et f est dérivable sur |zo, 2[. D’aprés égalité de Taylor-Lagrange, il existe alors
c € |z, x[ tel que
f"(c)

F@) = $o) + (o) (@ = 20) + 152 (0 = 20)?.

2
1l existe ¢ € ]zo, z[ tel que f(z) = f(xo) + f'(zo)h + f”(c)% .

(b) D’apreés ce qui précede,

£(z0) = f(z) —hf(xo) B f”(QC)h'

Ainsi, d’aprés I'inégalité triangulaire,

/ [f(x) = f(@o)| | [f"(Ih _ |f(@)]+|f(xo)| | ()|
|f'(w0)] < N L 5 < W LA 5

Par définition de My et Ma, on a |f(z)] < Mo, |f(z0)] < Mo et | f"(c)| < M.

2M hMs
|f' (o) < 5 + —

6. On a montré Y WM
Vo € Ja, +o0o[, Vh > 0, | f/(z0)] < TO + ?2

En particulier, pour h =1,
M.
Vo € a, +00[, |f(z0)| < 2Mo + 72

[ est bornée sur ]a, +ool|.

7. Tout d’abord, ¢ est une fraction rationnelle, donc ¢ est dérivable sur |0, +o00| et

%+§_Bh2—4A
h2 2 22

A
Vh > 0, @’(h)ZO@h:M/E.

On a alors le tableau de variations suivant.

Vh >0, ¢'(h) =

Comme B > 0et A >0,



8. Soit h > 0. On a montré

2M, hM:
Vo € Ja, ool |f'(x0)] < 57+ 5
2M, hM:
On en déduit que TO + =2 st un majorant de {If ()| | = € Ja, +00[}. Donc
2M, hM:
Vh >0, M1<TO+TQ.

On distingue plusieurs cas.
e Si My =0, alors f est nulle et M; = 0.

2M,
e Si My =0, alors Vh > 0, M; < TO d’ott My = 0.

M
e Si My >0et My >0, pour h = 2,/ﬁ°, on obtient M; < 2v/MoMs.
2

My < 24/ MoMs |.

Probléme 2

a

1. On raisonne par 'absurde et on suppose que v/3 est rationnel. Il existe alors a, b € N* tels que V3 = 3

et a Ab=1. On en déduit a® = 3b%. Ainsi 3 | a®, et donc 3 | @ car 3 est un nombre premier. Tl existe

alors @’ € N* tel que a = 3d/, ce qui implique 3a’* = b?. De la méme maniére, on en déduit 3 | b? puis
3| b. On a alors 3| a et 3 | b, ce qui contredit le fait que a et b sont premiers entre eux. Donc

V/3 est irrationnel |.

2. Soit a € Z et r le reste de la division euclidienne de a par 4. On a alors a =7 [4] et r € {0,1,2,3}. On
en déduit a® = 72 [4]. Bt comme 02 =22 =0 [4] et 12 = 3% = 1 [4], a? est congru a 0 ou a 1 modulo 4.

’Tout carré de nombre entier est congru & 0 ou & 1 modulo 4 ‘

Supposons que (n,m) € 7?2 vérifie n? = 3m? — 1.
e Sim?=0[4], alors n* = —1 =3 [4].
e Sim? =1 [4], alors n® = 2 [4].

Dans tous les cas, cela contredit le résultat précédent. Donc

I'équation n? = 3m? — 1 n’a aucune solution entiére |.

3. Montrons que Z [\/ﬂ est un sous-anneau de (R, +, x).



e Par définition de Z [\/3}, on aZ [\/ﬂ CR.
e Ona0=a+bV3pour (a,b) = (0,0) et 1 = a + bv/3 pour (a,b) = (1,0). Donc 0,1 € Z [\/ﬂ

e Soit x1,x0 € Z [\/3] Il existe aq,b1,a0,by € Z tels que z1 = a1 + b1\/§ et 19 = a9 + bg\/g. On a
alors

X1+ X2 = (a1 + az) + (bl + bg) \/g7
—_————  ~——
€L €Z
T1 X To = (a1a2 + 3()162) + (a1b2 + agb1) \/g

€Z €Z

Ainsi x1 + 22 € Z [\/g] et x1 X 10 €Z [\/ﬂ Donc Z [\/g] est stable par + et x.
e Soit x €7Z [\/g} 1l existe a,b € Z tels que x = a+bV/3. On a alors —z = (—a) 4+ (—=b)V/3. Comme
—a€let -bel, —x€Z [\/ﬂ Donc Z [\/g] est stable par passage & 'opposé.

Z [\/ﬂ est un sous-anneau de (R, +, x).

4. Soit z € Z [\/g} L’existence de a,b € Z tels que = a + bv/3 découle de la définition de Z [\/g}

Montrons 'unicité du couple (a, b).
Supposons que = = aj + b1 V3 = as + baV/3, avec a1, as, b1, by € Z. On a alors, par différence, a; — ag =

(by — b1)V/3. Si by # by, alors V3 = L2

b1 = ba, puis a1 = as.

2 . Ainsi V3 € Q, ce qui est faux. Donc nécessairement
2 — 01

V$€Z|:\/§:|, 3! (a,b) € Z? tel que z = a + bV/3|

5. (a) Soit z € Z [\/ﬂ On écrit & = a + bV/3, avec (a,b) € Z*. On a

N(z) = 2% = (a + bV3)(a — bV/3) = a® — 3b? € Z.

Donc VmGZ[\/g}, N(z) e Z|.

(b) Soit x1,x9 € Z [\/3} On écrit 71 = a1 + b1V/3 et 3 = ag + baV/3, avec ay,as, b1, by € Z. On a

Donc Vazl,xQGZ[\/ﬂ, T1 X Ty =T1 X Tg |

(c) Soit x1,x9 € Z [\/ﬂ On a, d’aprés la question précédente,

N(z122) = 2122 X T1T2
=21 X T2 X T1 X Tg
= (2171)(2272),

| N(212) = N(21)N(22)

4



(a) Soit z € Z [\/ﬂ Il existe a,b € Z tels que 2 = a + bV/3.

Supposons x € G. 1l existe alors y € Z [\/ﬂ tel que xy = 1. On en déduit N(x)N(y) =
N(zy) = N(1) = 1. Comme N(z), N(y) € Z, N(x) divise 1. Donc N(x) = +1. D’autre part,
N(z) = a®—3b?. Or, d’aprés la question 2, équation n? —3m? = —1 n’admet aucune solution
entiere. Donc N(z) # —1 et N(x) = 1.

Supposons N(x) = 1. On a alors 27 = 1. Ainsi, comme T € Z [\/ﬂ, x est inversible dans
Z [\/ﬂ et 271 =%. Donc z € G.

Donc VmGZ[\/g}, re€G& N(x)=1|

(b) On a2 € Z [\/g}, 2 #0et N(2) =4 # 1. Donc 2 est un élément de Z [\/ﬂ non nul et non

inversible. Donc |Z [\/ﬂ n’est pas un corps|.

(a) Supposons z = a + bV3 € H.

e On a en particulier z € G, donc, d’aprés la question 6a, N(x) = 27 = 1.

—1 1

e On a aussi z > 1, donc 0 < x = . Donc

0<T<l<2.
e On en déduit z —Z > 0. Or  — T = 2bv/3. On en déduit b > 0, puis b > 1 car b € Z.
e Enfin, comme Z >0, a>bv3>b>1.Donca>1, puisa>2car a € Z.

< 1 < z. Or, d’aprés ce qui précéde, =~

Six:a+b\/§€H,alorsa>2etb>1.

(b) Montrons xog € H et Yo € H, x > xp.
e On a N(xg) =22 -3x1%2=1, donc zg € G. De plus, zo > 1, donc zo € H.

e Soit z € H. Il existe a,b € Z tels que x = a + bv/3. D’aprés la question précédente, a > 2 et
b>1. Doncx:a+b\/§>2+\/§:xo.

Donc

’xo est le plus petit élément de H ‘

(c) Soit x € H. On considére A = {k eN*|zk < a:}

e A C N par définition de A.
e Comme z € H et z9g =minH, 2} <z. Donc 1€ Aet A# (.

e Soit k€ A. Comme 29 > 2,0n a k < 2k < 93]5 <z < |z] 4+ 1. Donc A est majoré dans N.

A admet donc un plus grand élément p. En particulier, p€ Aet p+1 ¢ A, donc 2 <z < xgﬂ.

Donc

Vo € H, 3p€N*te1quex€<x<xg+l.

(d) On montre le résultat par double inclusion.

(G, x) est un groupe et 9 € G. Donc Vp € N*, 2 € G. De plus, comme zg > 1, Vp €
N*, 2§ > xo > 1. Donc Vp € N*, 28 € H, et cela montre

{8 | pe N*} C H.



Soit x € H. D’aprés la question précédente, il existe p € N* tel que zf) < z < xﬁ“

_ —p
y=xXxH".

. Posons

e Comme (G, X) est un groupe et x,z9 € G, on en déduit y € G.
e Par définition de y, on a 1 < y < zo. En particulier, y € G et y < g = min H, donc
y ¢ H. Ainsi, d’apreés la définition de H, y < 1.

Finalement, y = 1 et « = 2. Donc

H C {zg|peN}.

Finalement, | H = {zf, | p € N*}|.

8. Commencons par vérifier que ¢ est bien définie. Comme zo € G et (G, x) est un groupe, Vp € Z, 25 € G.
De plus, comme —1 € G, ¥(p,e) € Z x Z*, exf; € G. Donc ¢ est bien définie. On montre ensuite que
© est un morphisme de groupes, injectif et surjectif.

e Commencons par expliciter la loi du groupe Z x Z*. 1l s’agit du produit cartésien des groupes
(Z,+) et (Z*, x). La loi  est définie par

V((p,e), (p,€") € (Zx %), (p,e) » (¥,€') = (p+ ', &€).

On vérifie alors que ¢ est un morphisme de groupes

o((p,e) * (p',€") = w(p+ 9, e€’)

/
= ee'zhtP

= () (e'a).

e Montrons que Kerp = {(0,1)}. Soit (p,e) € Z x Z* tel que ¢(p,e) = 1. Alors ezf) = 1. Comme
zo > 0, ezl a le méme signe que ¢, donc e = 1. Ainsi 2§ = 1. Comme z # 1, on en déduit p = 0.
Donc (p,e) = (0, 1), ce qui montre que ¢ est injective.

e Montrons enfin que ¢ est surjective. Soit x € G.

> Siz>1,alors x € H et il existe p € N* tel que x = 2 = ¢(p, 1).
> Si0<xz<1,alors 27! € H et il existe p € N* tel que ™+
> Sixz =1, alors x = ¢(0,1).
Six <0,alors —x € Get —x > 0, donc —z = ¢(p, 1) pour un certain p € Z, d'ot = = ¢(p, —1).
Comme 0 ¢ G, tous les cas sont traités. Ainsi ¢ est surjective.

= b, dou z = ¢(—p,1).

Donc ’gp est un isomorphisme de groupes ‘

9. Soit (n,m) € (N*)2. On pose x = n +m+/3. Comme n > 0 et m > 0, > 1. De plus,
(n,m) solution de (F) & N(z)=1 & z €.

Et comme x> 1,2 € G < = € H. Donc

(n,m) est solution de (E) si et seulement si n+mv3 € H |

10. Soit p € N*. On a
api1 +bpr1V3 = ™ = afwo = (ap + b,V/3)(2+ V3) = (2a, + 3by) + (a + 2b,) V3.

On en déduit, d’aprés la question 4,

Vp e N*, ap11 = 2a, + 3by et bypy1 = ap + 2b,|.




11. D’aprés ce qui précéde, les solutions de (E) sont de la forme a, + bp\/g, avec p € N*. Tl suffit donc de
déterminer les valeurs de p telles que 10 < b, < 100. Or, comme Vp € N*, a, > 0 et b, > 0, la suite
(bp)pen+ est strictement croissante. Aprés calculs, on obtient

(al, bl) = (2, 1), (ag, bQ) = (7, 4), (ag, bg) = (26, 15), (a4, b4) = (97, 56), (a5, b5) = (362, 209).

Donc les seuls couples (n,m) € (N*)? solutions de (E) vérifiant 10 < m < 100 sont (26, 15) et (97,56).

Les grandes plaques contiendront donc 262 = 676 ou 972 = 9409 chocolats |.




