
Chapitre C4

Polynômes

• Saisir l'objet algébrique que sont les polynômes et la représenta-
tion qui en est faite.

• Appréhender la correspondance avec les fonctions polynomiales.

• Maîtriser la dualité (algèbre/analyse) des notions de racine et de
racine multiple.

• Adapter aux polynômes les notions d'arithmétique.

Objectifs

Dans toute la suite, K désigne R ou C.

1 Structure

1.1 Anneau des polynômes

On appelle polynôme à coe�cients dans K une suite (ak)k∈N d'éléments de K nulle à partir d'un
certain rang, i.e. telle que

∃N ∈ N, ∀k ⩾ N, ak = 0.

Dé�nition C4.1

Soit P = (a0, . . . , an, 0, . . .) et Q = (b0, . . . , bn, 0, . . .) deux éléments de K[X] et λ ∈ K.

• la suite (λak)k∈N est un polynôme, noté λ · P ou λP ;

• la suite (ak + bk)k∈N est un polynôme, noté P +Q et appelé la somme de P et Q ;

• la suite (ck)k∈N dé�nie par

∀k ∈ N, ck =
k∑

i=0

aibk−i

est un polynôme, noté P ×Q = (c0, . . . , cn, . . .) et appelé produit de P et Q.

Proposition et dé�nition C4.2
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2 C4. Polynômes

Notations.

• On note 1 le polynôme (1, 0, . . .).

• On note X le polynôme (0, 1, 0, . . .).

• On note naturellement Xn le produit n fois de X par lui-même, qui donne

Xn = (0, . . . , 0︸ ︷︷ ︸
n zéros

, 1︸︷︷︸
an

, 0, . . .).

• Avec ces notations, P = (a0, . . . , an, 0, . . .) sera noté

P = a0 + a1X + . . .+ anX
n =

n∑
k=0

akX
k = P (X).

(K[X],+,×) est un anneau commutatif dont le neutre pour + est le polynôme nul 0 = (0)k∈N et
le neutre pour × est polynôme 1 = (1, 0, 0, . . .).

Proposition C4.3

Soit P,Q ∈ K[X] avec P (X) =

n∑
k=0

akX
k. La composition des polynômes P et Q est le polynôme

P ◦Q dé�ni par

(P ◦Q)(X) =

n∑
k=0

akQ(X)k.

Dé�nition C4.4

Soit P =

n∑
k=0

akX
k avec an ̸= 0. Alors on appelle

(i) degré de P l'entier n, noté deg(P ). Autrement dit

deg(P ) = max{k ∈ N | ak ̸= 0}.

(ii) terme dominant de P le monôme anX
n et coe�cient dominant le coe�cient an, que

l'on notera cd(P ),

(iii) polynôme constant un polynôme de degré 0,

(iv) polynôme normalisé ou unitaire un polynôme dont le coe�cient dominant vaut 1.

Dé�nition C4.5

Remarque. Par convention, le degré du polynôme nul est −∞.
Notation. On note Kn[X] l'ensemble des polynômes de degré inférieur ou égal à n.
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MPSI 2025�2026 P. Valéry C4. Polynômes 3

Soit P,Q ∈ K[X] et λ ∈ K. Alors

(i) deg(λP ) ⩽ deg(P ),

(ii) si λ ̸= 0, alors deg(λP ) = deg(P ) et cd(λP ) = λcd(P ),

(iii) deg(P +Q) ⩽ max(degP,degQ),

(iv) si deg(P ) < deg(Q), alors deg(P +Q) = deg(Q) et cd(P +Q) = cd(Q),

(v) deg(P ×Q) = degP + degQ et cd(P ×Q) = cd(P )× cd(Q),

(vi) si deg(Q) ⩾ 1, alors deg(P ◦Q) = deg(P ) deg(Q).

Proposition C4.6

Soit P,Q ∈ K[X]. Alors P ×Q = 0 ⇔ P = 0 ou Q = 0. Autrement dit, K[X] est intègre.

Proposition C4.7

Soit P ∈ K[X]. P est inversible si et seulement si P est constant non nul.

Proposition C4.8

1.2 Fonctions polynomiales

Étant donné un polynôme P =
n∑

k=0

akX
k ∈ K[X], on appelle fonction polynomiale associée à

P la fonction
P̃ : K → K

x 7→
n∑

k=0

akx
k.

Dé�nition C4.9

L'application evx : K[X] → K

P 7→ P̃ (x) =

n∑
k=0

akx
k

est un morphisme d'anneaux, véri�ant égale-

ment
∀P ∈ K[X], ∀λ ∈ K, evx(λP ) = λ evx(P )

et appelé morphisme d'évaluation en x.

Proposition et dé�nition C4.10
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4 C4. Polynômes

Soit P =
n∑

k=0

akX
k ∈ K[X].

• On dé�nit alors le polynôme dérivé de P par

P ′ = a1 + 2a2X + . . .+ nanX
n−1 =

n∑
k=1

kakX
k−1.

• On dé�nit pour tout k ∈ N le k-ième polynôme dérivé par

➢ P (0) = P ,

➢ ∀k ∈ N, P (k+1) =
[
P (k)

]′
.

Dé�nition C4.11 (Polynôme dérivé)

Soit P ∈ K[X] de degré n ∈ N.
(i) si n > 0, alors degP ′ = degP − 1 et cd(P

′) = ncd(P ),

(ii) P est constant si et seulement si P ′ = 0.

Proposition C4.12

Remarque. Cette propriété sur le degré de P ′ ne se généralisera qu'à un corps K de caractéristique nulle.

Soit P,Q ∈ K[X] et α, β ∈ K. Alors

(i) (αP + βQ)′ = αP ′ + βQ′ ;

(ii) (PQ)′ = P ′Q+ PQ′.

(iii) Soit n ∈ N. On a la formule de Leibniz :

(PQ)(n) =

n∑
k=0

(
n

k

)
P (k)Q(n−k).

Proposition C4.13

Soit n ∈ N et P ∈ Kn[X]. Soit a ∈ K. Alors

P =

n∑
k=0

P (k)(a)

k!
(X − a)k.

Proposition C4.14 (Formule de Taylor)
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2 Arithmétique des polynômes

2.1 Division euclidienne

Soit A,B ∈ K[X]. On dit que A divise B, ou que B est divisible par (ou un diviseur) de A, et
on note A | B s'il existe Q ∈ K[X] tel que B = A×Q. On dit alors aussi que B est un multiple

de A.

Dé�nition C4.15 (Divisibilité)

Soit A,B,C,D,U, V ∈ K[X].

(i) Si B ̸= 0 et A | B, alors degA ⩽ degB.

(ii) Si A | B et A | C, alors A | (UB + V C).

(iii) Si A | B et C | D, alors AC | BD.

(iv) Si (AB) | (AC) et A ̸= 0, alors B | C.

Proposition C4.16

La relation de divisibilité est ré�exive et transitive.

Proposition C4.17

Soit A,B ∈ K[X]. Les assertions suivantes sont équivalentes.

(i) A | B et B | A.
(ii) A | B et degA = degB.

(iii) ∃λ ∈ K×, A = λB.

Dans ce cas on dit que A et B sont associés et on note A ∼ B.

Proposition et dé�nition C4.18

Soit (A,B) ∈ K[X]2, B étant di�érent du polynôme nul. Alors il existe un unique couple (Q,R) ∈
K[X]2 tel que

• A = BQ+R,

• degR < degB.

On dit que Q est le quotient et R le reste de la division euclidienne de A par B.

Théorème et dé�nition C4.19 (Division euclidienne)
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6 C4. Polynômes

Remarque. C'est le degré qui joue ici le rôle d'indicateur de � stricte décroissance � du processus (variant
de boucle dans l'algorithme d'Euclide notamment). Une telle fonction (valeur absolue sur Z, deg sur K[X])
s'appelle un stathme euclidien. Un anneau disposant d'une division euclidienne s'appelle un anneau

euclidien et on peut y dé�nir toutes les notions arithmétiques déjà vues sur Z et rappelées ici dans K[X].

2.2 PGCD, PPCM

Notation. NotonsDiv(A) l'ensemble des diviseurs d'un polynômeA ∈ K[X] et plus généralementDiv(A1, . . . , An) =
{P ∈ K[X] | ∀i ∈ J1, nK, P | Ai}.

(i) Pour tout A ∈ K[X], Div(A, 0) = Div(A).

(ii) Si A = BQ+R, avec A,B,Q,R ∈ K[X], alors Div(A,B) = Div(B,R).

Lemme C4.20

Soit A,B ∈ K[X].

(i) Il existe D ∈ K[X], Div(A,B) = Div(D). Un tel polynôme est appelé un plus grand

commun diviseur (PGCD) de A et B.

(ii) Tous les PGCD de A et B sont associés.

(iii) Si A ̸= 0 ou B ̸= 0, les PGCD de A et B sont les éléments de Div(A,B) de degré maximal.
Parmi eux, un seul est unitaire, appelé le PGCD de A et B, noté A ∧B.

(iv) Par convention, si A = B = 0, A ∧B = 0.

Proposition et dé�nition C4.21

Soit A,B ∈ K[X].

(i) Si A ̸= 0 ou B ̸= 0, tout multiple commun à A et B de degré minimal est appelé un plus

petit commun multiple de A et B. Tous les PPCM de A et B sont associés. Parmi eux,
un seul est unitaire, appelé le PPCM de A et B, noté A ∨B.

(ii) Par convention, si A = B = 0, A ∨B = 0.

Proposition et dé�nition C4.22

Remarque. On importe du cas de Z les propriétés sur les PGCD et PPCM, ainsi que l'algorithme d'Euclide
pour déterminer un PGCD. On étend également ces dé�nitions au cas d'un nombre �ni de polynômes.
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Soit n ∈ N, A1, . . . An ∈ K[X].

(i) ∀D ∈ K[X], D |

(
n∧

i=1

Ai

)
⇔ ∀i ∈ J1, nK, D | Ai.

(ii) ∀M ∈ K[X],

(
n∨

i=1

Ai

)
| M ⇔ ∀i ∈ J1, nK, Ai | M .

Proposition C4.23

2.3 Bézout

Soit n ∈ N, A1, . . . An ∈ K[X]. Il existe U1, . . . , Un ∈ K[X] tels que
n∑

i=1

AiUi =
n∧

i=1

Ai.

Théorème C4.24

Soit n ∈ N, A1, . . . An ∈ K[X] et B un polynôme unitaire de K[X].

(i)
n∧

i=1

(BAi) = B

(
n∧

i=1

Ai

)
.

(ii) si n ̸= 0, alors
n∨

i=1

(BAi) = B

(
n∨

i=1

Ai

)
.

Proposition C4.25

Soit A,B ∈ K[X]. On dit que A et B sont premiers entre eux lorsque A ∧B = 1.

Dé�nition C4.26
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8 C4. Polynômes

Soit n ∈ N, A1, . . . An ∈ K[X].

(i) On dit que les A1, . . . , An sont premiers entre eux dans leur ensemble lorsque

n∧
i=1

Ai = 1.

(ii) On dit que les A1, . . . , An sont premiers entre eux deux à deux lorsque

∀i, j ∈ J1, nK, i ̸= j ⇒ Ai ∧Aj = 1.

Dé�nition C4.27

(i) Soit A,B ∈ K[X]. A ∧B = 1 ⇔ ∃U, V ∈ K[X] tels que AU +BV = 1.

(ii)
n∧

i=1

Ai = 1 ⇔ ∃U1, . . . , Un,
n∑

i=1

AiUi = 1.

Théorème C4.28 (Bézout)

Soit A,B,C ∈ K[X].

(i) Si A ∧B = 1 et C | B, alors A ∧ C = 1.

(ii) Si A ∧B = 1 et A ∧ C = 1, alors A ∧ (BC) = 1.

(iii) Si A ∧B = 1, alors ∀p, q ∈ N, Ap ∧Bq = 1.

Proposition C4.29

2.4 Gauÿ

Soit A,B,C ∈ K[X]. Alors
(A | BC et A ∧B = 1) ⇒ A | C

Théorème C4.30 (Gauÿ)

Soit A,B ∈ K[X].

(i) Si A ∧B = 1, alors A ∨B = AB.

(ii) (A ∧B)(A ∨B) = AB.

Théorème C4.31
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3 Racines d'un polynôme

3.1 Racines

Soit P ∈ K[X] et α ∈ K. On dit que α est une racine ou un zéro de P si P̃ (α) = 0.

Dé�nition C4.32

(i) Soit P ∈ K[X] et α ∈ K. Alors

α est une racine de P ⇔ (X − α)|P.

(ii) Soit P ∈ K[X] et α1, . . . , αr ∈ K deux à deux distincts. Alors

α1, . . . , αr sont racines de P ⇔

(
r∏

i=1

(X − αi)

)
|P.

Théorème C4.33

Soit n ∈ N.
(i) Tout polynôme non nul de degré inférieur ou égal à n admet au plus n racines.

(ii) Soit P ∈ K[X] un polynôme de degré n et cn son coe�cient dominant. Si P admet deux
racines deux à deux distinctes α1, . . . , αn ∈ K, alors

P (X) = cn

n∏
i=1

(X − αi).

(iii) Tout polynôme de degré n qui admet au moins n+ 1 racines est le polynôme nul.

(iv) Soit P,Q ∈ Kn[X] et α1, . . . , αn+1 ∈ K deux à deux distincts. Si ∀i ∈ J1, n + 1K, P (αi) =
Q(αi), alors P = Q.

Corollaire C4.34

Remarque. Ceci montre la bijectivité de la correspondance entre polynômes et fonctions polynomiales
P 7→ P̃ . Ce résultat est généralisable avec K un corps quelconque, dès que ce dernier est in�ni.
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10 C4. Polynômes

3.2 Racines multiples

Soit P ∈ K[X]. Soit α ∈ K.

(i) On appelle ordre de multiplicité de α en tant que racine de P l'entier να(P ) dé�ni par

να(P ) = max{k ∈ N | (X − α)k | P}.

(ii) Une racine d'ordre 1 est une racine simple

(iii) Une racine d'ordre strictement supérieur à 1 est une racine multiple.

Dé�nition C4.35 (Racines multiples)

Soit P ∈ K[X] et α ∈ K. Alors να(P ) ⩾ p si et seulement si (X − α)p | P .

Proposition C4.36

Soit P ∈ K[X] et α ∈ K. Les assertions suivantes sont équivalentes.

(i) να(P ) = p,

(ii) (X − α)p | P et (X − α)p+1 ∤ P ,

(iii) il existe Q ∈ K[X] tel que

• P = (X − α)pQ,

• Q(α) ̸= 0.

Proposition C4.37

Soit P ∈ K[X], p ∈ N∗ et α ∈ K.

(i) να(P ) ⩾ p si et seulement si P (α) = P ′(α) = . . . = P (p−1)(α) = 0.

(ii) να(P ) = p si et seulement si P (α) = P ′(α) = . . . = P (p−1)(α) = 0 et P (p)(α) ̸= 0.

Théorème C4.38 (Caractérisation de la multiplicité d'une racine)

Remarque. Cette caractérisation, comme les précédents résultats sur les polynômes dérivés, ne s'étend
qu'aux corps de caractéristique nulle.
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Soit P,Q ∈ K[X] et α ∈ K.

(i) Si να(P ) ⩾ 1, alors να(P
′) = να(P )− 1.

(ii) si P | Q, alors να(P ) ⩽ να(Q),

(iii) να(PQ) = να(P ) + να(Q),

(iv) να(P +Q) ⩾ min{να(P ), να(Q)} avec égalité si να(P ) ̸= να(Q).

Proposition C4.39

Soit P ∈ K[X], α1, . . . , αr des éléments distinct de K et ν1, . . . νr ∈ N. Les assertions suivantes
sont équivalentes.

(i) Pour tout i ∈ J1, rK, αi est une racine de multiplicité νi de P .

(ii) Il existe Q ∈ K[X] tel que

P (X) =

(
r∏

i=1

(X − αi)
νi

)
Q(X) et ∀i ∈ J1, rK, Q(αi) ̸= 0.

Théorème C4.40

Soit P ∈ K[X] de degré n ∈ N. Alors le nombre de racines de P , comptées avec multiplicités, est
inférieur ou égal à n. Autrement dit, si pour tout i ∈ J1, rK, αi est une racine de multiplicité νi de
P , alors

r∑
i=1

νi ⩽ n.

Corollaire C4.41

4 Factorisation dans K[X]

Soit P ∈ K[X], on note an son coe�cient dominant. On dit que P est scindé sur K s'il existe
des scalaires αk ∈ K (pas nécessairement distincts) tels que

P = an(X − α1) . . . (X − αn) = an

n∏
k=1

(X − αk).

Dé�nition C4.42
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12 C4. Polynômes

Soit P ∈ K[X] un polynôme non constant. On dit que P est irréductible si

P = AB ⇒ A ∈ K ou B ∈ K.

Dé�nition C4.43 (irréductibilité)

Les polynômes de degré 1 sont irréductibles dans K[X].

Proposition C4.44

Soit P un polynôme non nul de K[X]. Alors il existe α ∈ K∗ et m polynômes P1, . . . , Pm ∈ K[X]
irréductibles et unitaires tels que

P = α

m∏
k=1

Pk.

De plus α et l'ensemble des Pk sont uniques.

Théorème C4.45 (Décomposition en produit d'irréductibles)

4.1 Factorisation dans C[X]

Soit P un polynôme non constant de C[X]. Alors P possède au moins une racine dans C.

Théorème C4.46 (d'Alembert-Gauÿ)

Dans C[X], les polynômes irréductibles sont les polynômes de degré 1.

Théorème C4.47 (d'Alembert-Gauÿ)

Tout polynôme P ∈ C[X] est scindé sur C, c'est-à-dire qu'il s'écrit sous la forme

P = an(X − α1) . . . (X − αn),

où les scalaires αk sont les racines de P comptées avec multiplicités, et an son coe�cient dominant.

Corollaire C4.48
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Soit P = Xn+an−1X
n−1+. . .+a1X+a0 un polynôme unitaire et α1, . . . , αn ses racines complexes.

Alors

(i) a0 = (−1)n
n∏

k=1

αk,

(ii) an−1 = −
n∑

k=1

αk,

Corollaire C4.49

Tout polynôme P ∈ C[X] de degré n admet n racines dans C, comptées avec leurs multiplicités.

Théorème C4.50 (Factorisation dans C[X])

Soit A,B ∈ C[X]. Alors
A | B ⇔ ∀α ∈ C, να(A) ⩽ να(B).

Théorème C4.51

Soit n ∈ N∗.

Xn − 1 =
∏

ω∈Un

(X − ω) =
n−1∏
k=0

(X − e
2ikπ
n ).

Proposition C4.52

4.2 Factorisation dans R[X]

Dans R[X], les polynômes irréductibles sont les polynômes de degré 1 et les polynômes de degré
2 dont le discriminant est strictement négatif.

Théorème C4.53
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14 C4. Polynômes

Soit P ∈ R[X]. Alors P peut s'écrire sous la forme

P = a
r∏

k=1

(X − αk)
s∏

ℓ=1

(X2 + bℓX + cℓ),

avec

• a ∈ R∗ le coe�cient dominant de P (sauf si P = 0 ; dans ce cas a = 0),

• α1, . . . , αr ∈ R les racines réelles de P , non nécessairement distinctes,

• (b1, c1), . . . , (bs, cs) ∈ R2 tels que, pour tout 1 ⩽ ℓ ⩽ s, on ait ∆ℓ = b2ℓ − 4cℓ < 0.

Théorème C4.54 (Factorisation dans R[X])

• Détermination du degré d'un polynôme.

• Montrer qu'un polynôme est nul ou que deux polynômes sont
égaux.

• Calcul du reste dans la division euclidienne de deux polynômes.

• Décomposition d'un polynôme en produit de facteurs irréduc-
tibles.

Objectifs
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