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Probléme 1| Fonctions convexes

A Calcul préliminaire

1. Soit < y < z trois nombres réels. On pose A = S
z—x
Y z—Yy
y>xzdonc z—y<z—z. Et z—2 > 0. Donc < 1| De plus z —y > 0 donc > 0|
z—x z—x
z— z— z— —x 2T —Yr +yz — 2
Et \e +(1—-X)z= y:v—{—(l— y)z: Y Y8, = yr+y =[y]
z—x z—x z—x z—x z—x

B Le vif du sujet

On notera Cy la courbe représentative de f.
2. Les coordonnées de M; et My sont My (x1, f(x1)) et Ma(xa, f(x2)).

Xro — T
. Alors
T2 — I1

e le point d’abscisse  de la courbe Cy a pour coordonnées (z, f(x))

e si on note (z,y) les coordonnées du point d’abscisse x du segment [M;Ms], par une relation de

Thales, on a A = m et donc y = Af(x1) + (1 — A) f(z2).

Ainsi @ f est convexe si et seulement si f(z) < y,

si et seulement si I'arc de Cy compris entre My et My est situé sous le segment [MyMs] |

Pour tout x € [x1,z2], on écrit z = Axy + (1 — X\)zg avec A =

3. Supposons f est convexe et concave.
Pour n € N quelconque, considérons les points M; et Ma d’abscisses —n et n. L’arc de Cy qu’ils
encadrent est en dessous et au-dessus du segment [M;Ms] donc 'arc de la courbe et le segment
sont confondus. Pour tout n la partie de la courbe comprise entre x = —n et = n est rectiligne,
donc ’Cf est une droite ‘

Supposons que f est affine. Alors Ja,b € R, Vax € R, f(z) = az +b.
Alors f(Az1 + (1 — Na2) =a(Azy + (1 — N)xa) + b
et Af(z1) + (1 =N f(x2) = Aaz1 +b) + (1 — N)(aza +b) = a(Az1 + (1 — N)za) + b(A+1 — A).

—_———
b

Ceci montre que ’f (Az1 + (1 = XN)z2) = Af(x1) + (1 = A) f(z2) ‘

4. festconcave < Vap,xzg€letAe(0,1], f(Az1+ (1 —N)z2) = Af(x1) + (1 — X)) f(x2)
& =z + (1= M) < = (Af(21) + (1= A) f(22))
& —fQa + (1= Maz) S A= f(21) + (1= A)(=f(22))

& ’—f est convexe ‘

5. Supposons f convexe. Procédons par récurrence pour montrer pour tout n > 2 la propriété P(n) :

n n n
pour tous T1,...,xn, € I et A\i,..., \, € R tels que Z)\Z-:l, onaf<2)\,-x,-> SZ/\if(:L')
i=1

i=1 i=1



pour n = 2, c’est exactement la définition de la convexité (avec A = Ay et donc 1 — A = Ao.

Soit n > 2. Supposons P(n) vraie.
Soit x1,...,Tpnt1 € L et A,..., App1 € R tels que Ay + ...+ A1 = 1.

i
e Posons, pour tout 1 <1< n, gy = ———.
P Hi M4+ N\,
n n
Ainsi, p1 + ...+ pn = 1. Donc d’aprés hypothése de récurrence, f (Z m%) < Z pi f (i)
i=1 ‘
Si on note X = Z wixs, cela s’écrit f(X Z i f ().

Par ailleurs, soit )\ =X +...+ Ay alors 1 — )\ Ant1-
On applique la définition de la convexité entre X et x,41 :

FOX + (1 =Nrptr) < )\fq(lX) + (1= A) f(znt1)
< )\Zﬂif(%‘) + A1 f(Tny1)

=1

n

Do Xif (@) + A f (Tng)-

n+1 n+1
Ainsi, f (Z /\ﬂ?,) < Z)\Zf(wl)
=1 =1

6. (a) Soit a < 8 < . D’aprés le résultat préliminaire, en posant A =

convexité, f(B) < Af(a) + (1 —=XN)f(v) (%)
et donc f(B) — f(7) < Af(e) = Af(7).
Finalement, | f(v) — f(B8) = AM(f(7) — f(«

)|
De (%), on peut aussi obtenir ’f( )— fla) < (=N (f(y) — fla)) ‘
De (%), on tire aussi (A + (1 = X)) f(B) < Af(«) ‘+ (I=XN)f()

et done | A(f(8) — () < (1 =N (f(0) ~ £(B)|
(b) Soit a € I.

Supposons f convexe. Soit z,y dans I \ {a} tels que z < y.

-8

, B=Xa+ (1 —X)y. Par

1" cas : z <y < a.

a
D’apres I'inégalité (1), avec A =
a

—2 ona f(a) = f(y) > A(f(a) - f(a)),

soit f(a) = f(y) > =2 (f(a) = f(a)).
)~ f(a) _ f@) = f(a)

=
Yy—a T —a

Finalement,

, C’est a dire ’ D, (z) < Pu(y) ‘

2°cas: x <a<y.

D’aprés Iinégalité (3), avec \ = ~ _z, on a A(f(a) — f(z)) < (1 - N (f(y) - f(a)),

y—
soit Z:Z(f(a) — f(z)) < Z : i(f(?/) — f(a)).
Finalement 1 ;:i(a) < f(y; : i(a)7 c’est a dire ’ Pu(z) < Pu(y) ‘
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Jecas: a<x<y.
D’apres linégalité (2), avec A= 2~ on a f(z) — f(a) < (1 — N (f(y) — f(a)),
y—a
r—a

soit f(x) — f(a) < - L (f) = f(a)).
fle) — fla) _ f) - f(@)
T —a y—a

Ceci montre que ’ D, est croissante‘

Supposons ®, croissante pour tout a € I.

Soit x1,x9 € I. On suppose, quitte a les renuméroter, que x; < xg. Soit A € [0, 1]. On pose
y—1
y—x

Finalement, , Cest a dire ’ D, (z) < Pu(y) ‘

t=Xr+ (1 - ANy € [z,y], ainsi A =

o, (1), don 18 =) 10— 1@)
T —y t—vy

<
soit A(f(z) — f(y)) = f(t) — f(y)- Dou f(t) < Af(z) + (1 — A)f(y), ce qui montre que
f est convexe |.

La croissance de la fonction ®, donne ®,(z) ,

P=Q
7. (a) Supposons quon a ¢ Q = R
R=P
Ona P = Qetcomme = Ret R= P,on aaussi Q= P.
Ceci montre P < @ et on montre de méme que Q < Ret R < P.
Ainsi ’P, Q@ et R sont équivalentes ‘

b) La tangente en a & la courbe Cs a pour équation
& f
y= f'(a)(x —a) + f(a).

(c) On suppose que f est dérivable.

(i)=(ii) | Supposons f convexe. Soit a,b € R tels que a < b. Pour tout x € I, on a, par croissance de @,

fla) ~ f(z) < F(b) - f(x) Par passage a la limite z — a, cela donne f'(a) < M.
a—x b—=x b—a
On a aussi, en faisant tendre x vers b, Jw < f'(b).

Ces deux inégalités montrent que f'(a) < f'(b), ce qui montre que ’f’ est croissante ‘

(ii)= (iii) | On suppose f’ croissante et pour tout a, on note (7,) la tangente a Cy en a. Etudions g(z) =
f(@) = (f'(a)(z — a) + f(a)).
g est dérivable et pour tout z € I, ¢'(x) = f'(z) — f'(a). Or f’ est croissante, d’oi1 le tableau
de variations suivant.

g (x) - 0 +
9(@) \ 0 /

g est donc toujours positive ou nulle et donc |Cy est au-dessus de (7,) |




(ili)= (i) | On suppose que Cy est au dessus de ses tangentes.
Soit x1,x2 € I et A € [0, 1].
On note M le point de Cy d’abscisse x1 et M> le point de Cy d’abscisse xs.
Soit & = Az1 + (1 — X)x2, M le point de Cy d’abscisse x et P le point de [y My] d’abscisse .
Ainsi zp =z et yp = Af(z1) + (1 — A) f(z2).

Or la courbe est au-dessus de la tangente en M. D’ou

Donc yp > Af'(z)(z1—2) + f(@)] + (1 = N[f'(2) (22 — 2)
> f(@)+ (@) Az + (1= Naz — )
Comme x = Az1 + (1 — A\)xzg, on a finalement yp = Af(z1) + (1 — A\)f(z2) > f(x) ce qui

montre que | f est convexe |.

8. Supposons f deux fois dérivable. Alors f’ est dérivable et donc f’ est croissante si et seulement si f”
est positive.

Donc ’ f est convexe si et seulement si f” est positive ‘




