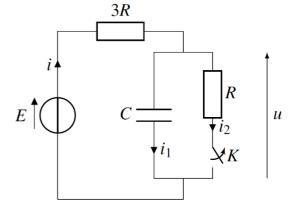

E2 - Transitoire des circuits du 1er ordre

Exercice: Etude d'un circuit RL

On considère le circuit représenté ci-dessous.

A l'instant t = 0, on ferme l'interrupteur K qui était ouvert depuis très longtemps.

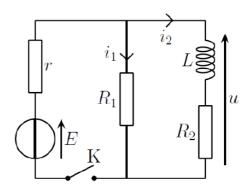


- **Q1.** Effectuer une analyse par schéma équivalent de l'instant $t = 0^+$. Donner les expressions de l'ensemble des grandeurs à cet instant.
- **Q2.** Effectuer une analyse par schéma équivalent de l'instant $t \to \infty$. Donner les expressions de l'ensemble des grandeurs à cet instant.
- **Q3.** Établir l'équation différentielle vérifiée par la tension s(t). La résoudre, exprimer puis tracer l'allure de s(t).
- **Q4.** Exprimer le temps t_0 au bout duquel la tension s a été divisée par 10, en fonction de L et R.
- **Q5.** On mesure $t_0 = 3.0 \, \mu s$ pour $R = 1000 \, \Omega$. En déduire la valeur de L.

Exercice : Décharge et recharge d'un condensateur

En début d'expérience, l'interrupteur K est ouvert depuis un temps très long (à préciser). Puis il est fermé à l'instant t=0 et l'on constate que la tension u(t) aux bornes du condensateur évolue avec une constante de temps $\tau=2,0$ ms. Au bout d'un certain laps de temps (très supérieur à τ), l'interrupteur K est rouvert et cette fois la tension aux bornes du condensateur évolue avec une constante de temps $\tau'=10$ ms.

- **Q1.** Donner les valeurs des intensités dans les trois branches et de la tension u à $t=0^-$ et $t=0^+$.
- **Q2.** Préciser la valeur de u à la réouverture de K. Justifier.
- **Q3.** Établir ensuite les expressions littérales de τ et τ' , puis montrer que les mesures faites donnent accès à la valeur numérique du rapport des résistances R_1/R_2 .

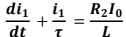

Exercice: Circuit avec bobine

On considère le circuit suivant. Le régime est considéré préalablement atteint.

A t = 0, on ferme l'interrupteur.

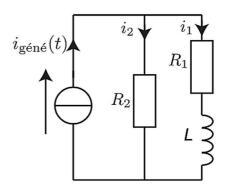
- **Q1.** Étudier l'état du circuit à $t=0^+$ et en régime permanent pour $t \to \infty$.
- **Q2.** Déterminer pour t > 0 l'intensité du courant $i_2(t)$ traversant la bobine.
- **Q3.** Déterminer pour t > 0 l'intensité du courant $i_1(t)$ traversant la résistance R_1 .

Exercice : Charge d'une bobine en dérivation


Le circuit que l'on considère est soumis à un échelon de courant délivré par un générateur idéal de courant tel que :

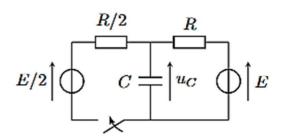
•
$$i_{g\acute{e}n\acute{e}} = 0 pour t < 0$$

•
$$i_{g\acute{e}n\acute{e}} = I_0 pour t \ge 0$$

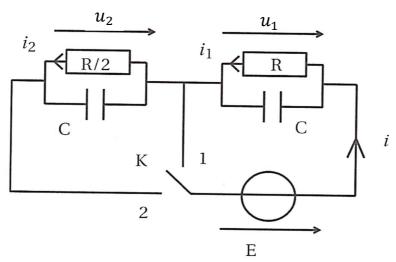

- **Q1.** Que valent les courants i_1 et i_2 pour t < 0 ? En déduire que $i_1(0^+) = 0$. Que vaut $i_2(0^+)$?
- **Q2.** Montrer que pour $t \ge 0$ l'intensité $i_1(t)$ obéit à l'équation:

$$\frac{di_1}{dt} + \frac{i_1}{\tau} = \frac{R_2 I_0}{L}$$

avec τ un paramètre dont on précisera l'expression en fonction de L, de R_1 et R_2 . Quelle est l'unité de τ ?


- **Q3.** En déduire l'expression de l'intensité $i_1(t)$ qui traverse la bobine.
- **Q4.** Tracer l'allure de la courbe de $i_1(t)$. On fera apparaître les valeurs remarquables. Quel est l'ordre de grandeur de la durée du régime transitoire ?

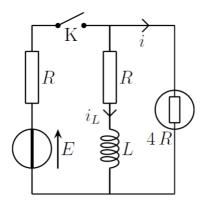
Exercice : Condensateur alimenté par 2 générateurs


Dans le montage ci-contre, l'interrupteur est fermé à l'instant t=0.

- **Q1.** Etablir l'équation différentielle vérifiée par u_c .
- Q2. Résoudre cette équation.
- **Q3.** Déterminer le temps t_1 nécessaire pour que la valeur finale soit atteinte à 1% près.
- **Q4.** Exprimée la puissance dissipée. Interpréter sa valeur finale.

Exercice: Circuit à deux condensateurs

Soit le circuit suivant :



A l'instant $t = 0.0 \, s$, on déplace l'interrupteur K fermé depuis longtemps sur 1 vers la position 2. Le générateur délivre une tension E constante.

- **Q1.** Le condensateur de droite est initialement chargé alors que celui de gauche est initialement déchargé. Exprimer les tensions $u_1(0^+)$ et $u_2(0^+)$ aux bornes des deux condensateurs juste après le changement de position de l'interrupteur en fonction de E.
- **Q2.** Déterminer l'équation différentielle à laquelle obéit la tension $u_1(t)$.
- **Q3.** En déduire l'expression de $u_1(t)$ puis en déduire très simplement celle de $u_2(t)$. On posera une constante de temps τ qu'on exprimera en fonction de R et C. Donner un tracé qualitatif de ces deux fonctions.
- **Q4.** Retrouver les valeurs de $u_1(\infty)$ et $u_2(\infty)$ pour un temps infini en fonction de E à l'aide d'un circuit simplifié.
- **Q5.** Donner l'expression de l'intensité i(t).
- **Q6.** Calculer l'énergie perdue ou gagnée par le condensateur soumis à la tension u_1 entre l'instant initial t=0 s et un temps infini.

Exercice : Lampe témoin

Considérons le circuit ci-dessous dans lequel il y a une lampe de résistance 4R. On rappelle qu'une lampe a exactement le même comportement électrocinétique qu'un résistor.

- **Q1.** Déterminer le courant i(t) dans la lampe :
 - **a.** Après la fermeture de K;
 - **b.** Lorsque le régime permanent est atteint ;
 - **c.** Après la réouverture de *K* ensuite.
- **Q2.** La lampe ne s'allume que pour $|i| > \frac{e}{8R}$. Quel peut bien être son rôle ?