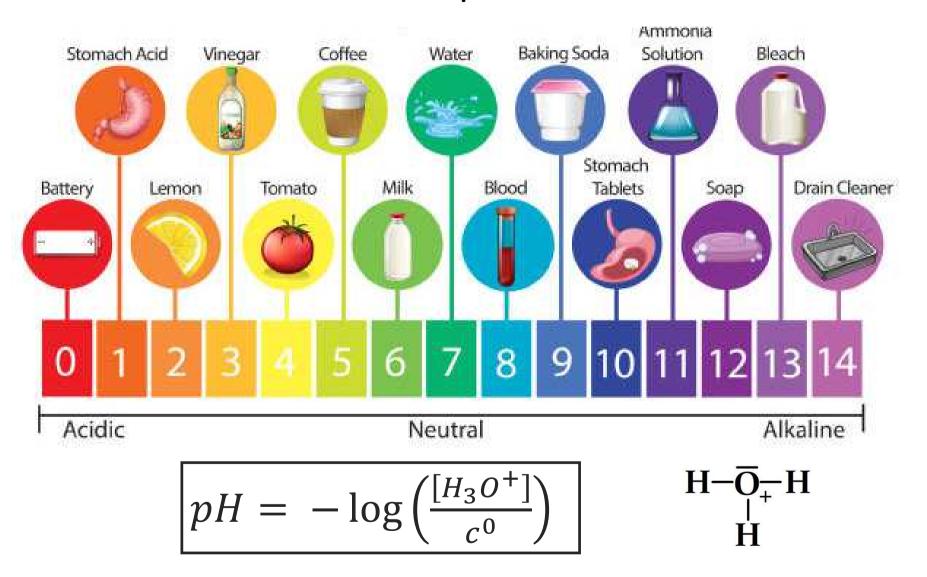
Réactions acido-basiques

Chapitre C5


C'est quoi un acide?

Date	Expérimentalement	Théories
Antiquité	On goûte	Le goût acide provient d'atomes « pointus ».
1663	Boyle découvre que le sirop de violette n'a pas la même couleur si on ajoute un acide ou une base → 1er indicateur coloré.	
1789		Lavoisier: Les acides sont des composés contenant de l'oxygène (théorie erronée!).
1884		Arrhenius : les acides font augmenter la concentration de H ⁺ dans l'eau; les bases font augmenter la concentration de HO ⁻ dans l'eau.
1909	Sørensen définit le pH (potentiel hydrogène).	
1923		Indépendamment, <i>Brönsted</i> et <i>Lowry</i> postulent que les réactions acide-base peuvent s'interpréter comme un échange de proton H ⁺ (voir ci-après).
		La même année, <i>Lewis</i> interprète les réactions acide-base comme un échange de doublet d'électrons (théorie non étudiée cette année).

Soren Sørensen

Le pH

Pourquoi des oxoniums dans l'eau?

Définition : Autoprotolyse de l'eau

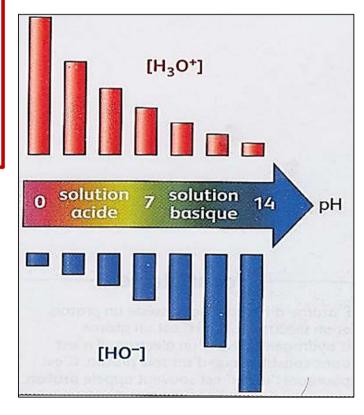
L'eau est capable de réagir avec elle-même pour donner des ion oxonium H_3O^+ et des ion hydroxyde HO^- :

$$2 H_2 O_{(l)} \subseteq H_3 O^+_{(aq)} + HO^-_{(aq)}$$

On appelle cette réaction l'autoprotolyse de l'eau.

Pourquoi des oxoniums dans l'eau?

Définition : Autoprotolyse de l'eau


L'eau est capable de réagir avec elle-même pour donner des ion oxonium H_3O^+ et des ion hydroxyde HO^- :

$$2 H_2 O_{(l)} = H_3 O^+_{(aq)} + HO^-_{(aq)}$$

On appelle cette reaction l'autoprotolyse de l'eau.

Produit ionique de l'eau

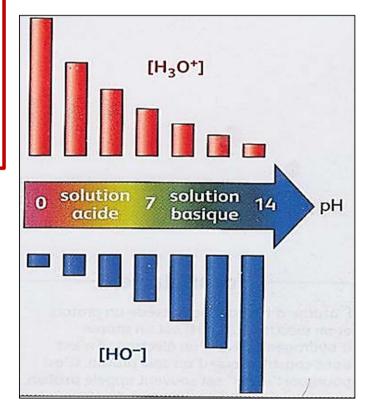
$$K_e = \frac{[\text{H}_3\text{O}^+]_f.[HO^-]_f}{(c^0)^2} = 10^{-14}$$
 (à 25°C)

Pourquoi des oxoniums dans l'eau?

Définition : Autoprotolyse de l'eau

L'eau est capable de réagir avec elle-même pour donner des ion oxonium H_3O^+ et des ion hydroxyde HO^- :

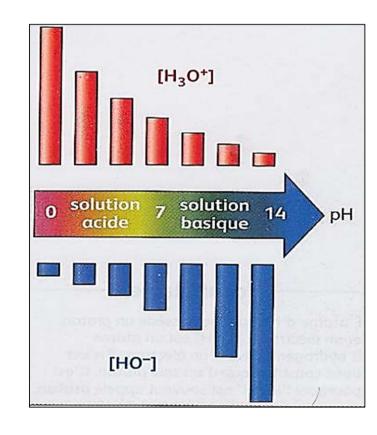
$$2 H_2 O_{(l)} = H_3 O^+_{(aq)} + HO^-_{(aq)}$$


On appelle cette reaction l'autoprotolyse de l'eau.

Produit ionique de l'eau

$$K_e = \frac{[H_3O^+]_f \cdot [HO^-]_f}{(c^0)^2} = 10^{-14}$$
 (à 25°C)

Notation p \rightarrow cologarithme

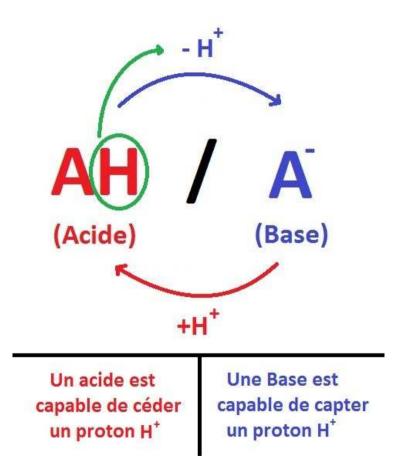

$$pK_e = -\log(K_e) = 14$$

L'échelle des pH

Définition : Echelle de pH

- Une solution pour laquelle $[H_3O^+]_f > [HO^-]_f$ est une **solution acide**.
- Une solution pour laquelle $[H_30^+]_f < [H0^-]_f$ est une **solution basique**.
- Une solution pour laquelle $[H_3O^+]_f = [HO^-]_f$ est une **solution neutre**.

Applications


Calculer la concentration en ion oxonium $[H_3O^+]$ et en ion hydroxyde $[HO^-]$ pour :

- du jus de citron à 25°C dont le pH vaut 2;
- du détergeant à 25°C dont le pH vaut 8,5;
- de la salive dont le pH vaut 6,9.

Précisez pour chacune de ces solutions si elle est acide , basique ou neutre.

Données: à 25 °C,
$$pK_e = 14$$
;
à 37 °C, $pK_e = 13,6$.

Couple acide/base

Equation d'équilibre de Bronsted

$$AH \leftrightarrows A^- + H^+$$

Pour faire un échange, il faut être deux

Exemple : Réaction entre l'acide éthanoïque et l'ammoniac

Noms	Couple	Equation d'équilibre de Bronsted
Acide éthanoïque (ou acétique) Ion éthanoate (ou acétate)	<i>CH</i> ₃ <i>COOH</i> / <i>CH</i> ₃ <i>COO</i> ⁻	$CH_3COOH \leftrightarrows CH_3COO^- + H^+$
Ion ammonium Ammoniac	$N{H_4}^+/N{H_3}$	$NH_4^+ \leftrightarrows NH_3 + H^+$

Pour faire un échange, il faut être deux

Exemple: Réaction entre l'acide éthanoïque et l'ammoniac

Noms	Couple	Equation d'équilibre de Bronsted
Acide éthanoïque (ou acétique) Ion éthanoate (ou acétate)	CH ₃ COOH / CH ₃ COO ⁻	$CH_3COOH \leftrightarrows CH_3COO^- + H^+$
Ion ammonium Ammoniac	NH_4 ⁺ NH_3	$N{H_4}^+ \leftrightarrows NH_3 + H^+$

$$CH_3COOH \leftrightarrows CH_3COO^- + H^+$$

 $NH_3 + H^+ \leftrightarrows NH_4$

Réactifs à gauche!

Pour faire un échange, il faut être deux

Exemple: Réaction entre l'acide éthanoïque et l'ammoniac

Noms	Couple	Equation d'équilibre de Bronsted
Acide éthanoïque (ou acétique) Ion éthanoate (ou acétate)	CH ₃ COOH / CH ₃ COO ⁻	$CH_3COOH \leftrightarrows CH_3COO^- + H^+$
Ion ammonium Ammoniac	NH_4 ⁺ NH_3	$N{H_4}^+ \leftrightarrows NH_3 + H^+$

$$CH_3COOH \leftrightarrows CH_3COO^- + H^+$$

 $NH_3 + H^+ \leftrightarrows NH_4^+$

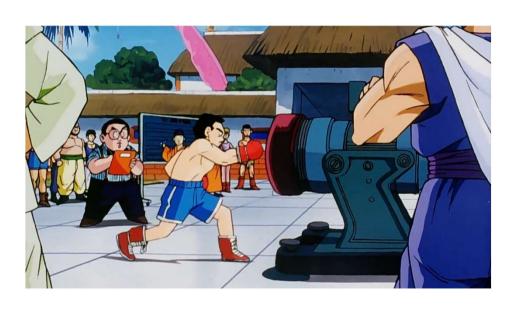
Réactifs à gauche!

$$CH_{3}COOH_{(aq)} + NH_{3(aq)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + NH_{4}^{+}_{(aq)}$$

La réaction est-elle totale?

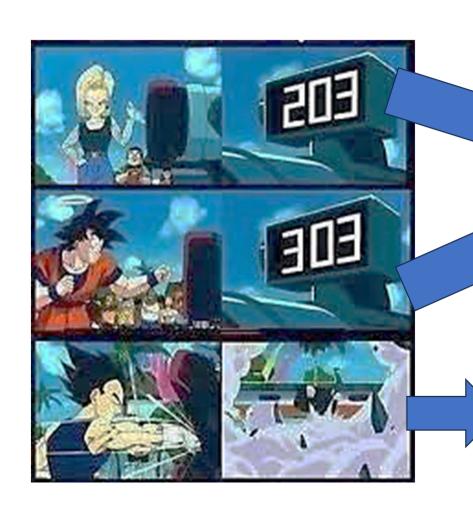
$$CH_3COOH_{(aq)} + NH_{3(aq)} \leftrightarrows CH_3COO^{-}_{(aq)} + NH_{4}^{+}_{(aq)}$$

C'est un acide : son job est de se débarrasser de son H^+


C'est un acide : son job est de se débarrasser de son H^+

La réaction est-elle totale?

$$CH_{3}COOH_{(aq)} + NH_{3}{}_{(aq)} \leftrightarrows CH_{3}COO^{-}{}_{(aq)} + NH_{4}^{+}{}_{(aq)}$$


Mesurer la force d'un acide

Il faut une référence commune : on va prendre l'eau!

$$AH_{(aq)} + H_2O_{(l)} \iff A^-_{(aq)} + H_3O^+_{(aq)}$$

Mesurer la force d'un acide

Réaction limitée avec l'eau : acide **faible** (on va pouvoir les classer!)

Réaction totale avec l'eau : acide **fort**

Attribuer un score à chaque acide faible

$$AH_{(aq)} + H_2O_{(l)} \iff A^-_{(aq)} + H_3O^+_{(aq)}$$

$$K_{a} = \frac{[A^{-}]_{f} \cdot [H_{3}O^{+}]_{f}}{[AH]_{f} \cdot c^{0}}$$

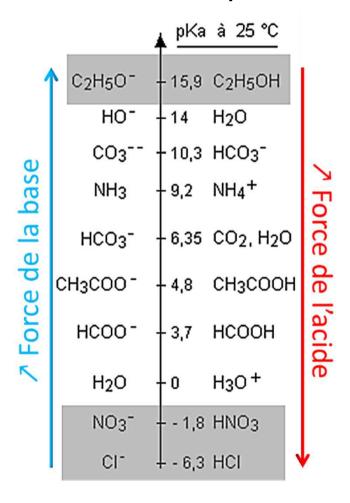
$$pK_a = -log(K_a)$$

associée au couple AH/A^- et pas seulement à l'acide

Attribuer un score à chaque acide faible

$$AH_{(aq)} + H_2O_{(l)} \iff A^-_{(aq)} + H_3O^+_{(aq)}$$

$$K_a = \frac{[A^-]_f \cdot [H_3 O^+]_f}{[AH]_f \cdot c^0}$$


Plus K_a est grand, plus l'acide est fort.

$$pK_a = -log(K_a)$$

Plus pK_a est petit, plus l'acide est fort.

Attribuer un score à chaque acide faible

Comment se traduit la force pour un acide?

Dans de l'eau pure (neutre)

Etat	Avancement volumique	$AH_{(aq)}$ -	$H_2O_{(l)} \subseteq$	$A^{-}(aq)$ +	$-H_3O^+_{(aq)}$
Initial	x = 0	c_{ini}		0	$10^{-7}\approx 0$
Intermédiaire	х	$c_{ini} - x$	En excès (solvant)	х	x
Final	x_f	$c_{ini} - x_f$	(Solvalit)	χ_f	χ_f

$$[A^{-}]_{f} = \alpha. c_{ini}(AH) \Rightarrow \alpha = \frac{[A^{-}]_{f}}{[A^{-}]_{f} + [HA]_{f}}$$
Coefficient de dissociation

Application — L'acide acétique

 CH_3COOH est un acide faible dans l'eau, avec $pK_A = 4.8$ pour le couple CH_3COOH/CH_3COO^- .

- 1) Écrire la réaction de l'acide acétique avec l'eau.
- 2) Étant donnée la valeur de la constante de réaction (constante d'acidité), que vous préciserez, comment qualifieriez-vous la réaction ?
- 3) Par une astucieuse approximation sur le coefficient de dissociation α , proposez une expression simplifiée de K_A en fonction de α .
- 4) En déduire une estimation de α dans le cas où c_{ini} = 10^{-1} mol.L⁻¹. Commentez.

Et pour les bases ?

Dans de l'eau pure (neutre)

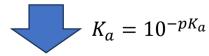
Etat	Avancement volumique	$A^{(aq)}$ -	$H_2O_{(l)} \subseteq$	$HA_{(aq)}$ +	HO^- _(aq)
Initial	x = 0	c_{ini}		0	$10^{-7}\approx 0$
Intermédiaire	х	$c_{ini} - x$	En excès (solvant)	х	x
Final	x_f	$c_{ini} - x_f$	(Solvalit)	x_f	χ_f

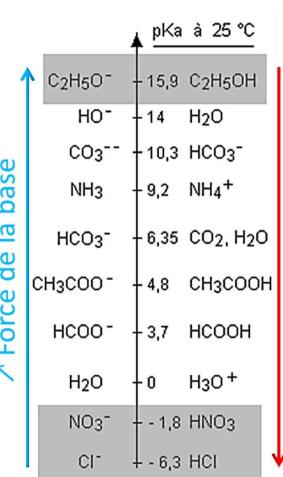
$$[HA]_f = \alpha.c_{ini}(A^-) \Rightarrow \boxed{\alpha = \frac{[HA]_f}{[A^-]_f + [HA]_f}}$$
Coefficient de dissociation

Application — L'ammoniac

 NH_3 est une base faible dans l'eau, avec pK_A = 9,2 pour le couple $NH_4^+NH_3$.

- 1) Écrire la réaction de l'ammoniac avec l'eau.
- 2) Étant donnée la valeur de la constante de réaction (constante d'acidité), que vous préciserez, comment qualifieriez-vous la réaction ?
- 3) Par une astucieuse approximation sur le coefficient de dissociation α , proposez une expression simplifiée de K_A en fonction de α .
- 4) En déduire une estimation de α dans le cas où c_{ini} = 10^{-1} mol.L⁻¹. Commentez.

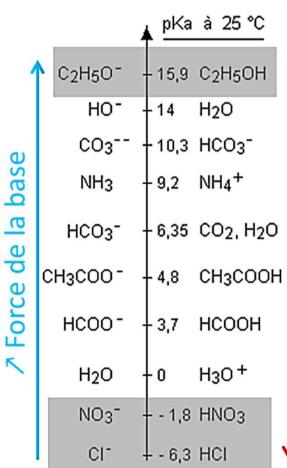

$$CH_{3}COOH_{(aq)} + NH_{3}{}_{(aq)} \leftrightarrows CH_{3}COO^{-}{}_{(aq)} + NH_{4}^{+}{}_{(aq)}$$


$$CH_3COOH_{(aq)} + NH_{3(aq)} \leftrightarrows CH_3COO^{-}_{(aq)} + NH_{4}^{+}_{(aq)}$$

$$K^{0} = \frac{[CH_{3}COO^{-}]_{f}.\left[NH_{4}^{+}\right]_{f}}{[CH_{3}COOH]_{f}.\left[NH_{3}\right]_{f}} = \frac{[CH_{3}COO^{-}]_{f}.\left[H_{3}O^{+}\right]_{f}}{[CH_{3}COOH]_{f}.c^{0}}.\frac{c^{0}.\left[NH_{4}^{+}\right]_{f}}{[H_{3}O^{+}]_{f}.\left[NH_{3}\right]_{f}}$$

$$K^{0} = \frac{K_{a1}(CH_{3}COOH/CH_{3}COO^{-})}{K_{a2}(NH_{4}^{+}/NH_{3})}$$

$$K^0 = 10^{(pK_{a2} - pK_{a1})}$$


$$CH_3COOH_{(aq)} + NH_{3(aq)} \leftrightarrows CH_3COO^-_{(aq)} + NH_4^+_{(aq)}$$

$$K^0 = 10^{(pK_{a2} - pK_{a1})}$$

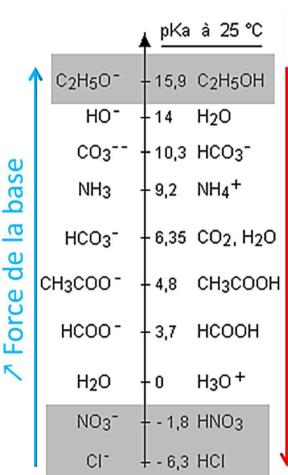
Propriété : Sens de réaction thermodynamiquement favorisé

Si $K^0 > 1$ $(pK_{a2} > pK_{a1}) \rightarrow$ sens direct thermodynamiquement favorisé.

Si $K^0 < 1$ ($pK_{a2} < pK_{a1}$) \rightarrow sens inverse thermodynamiquement favorisé.

$$CH_3COOH_{(aq)} + NH_{3}{}_{(aq)} \leftrightarrows CH_3COO^{-}{}_{(aq)} + NH_4{}^{+}{}_{(aq)}$$

$$K^0 = 10^{(pK_{a2} - pK_{a1})}$$

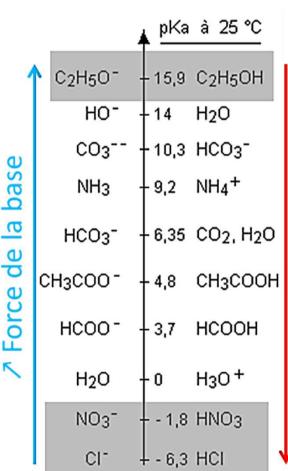

Propriété : Sens de réaction thermodynamiquement favorisé

Si $K^0 > 1$ ($pK_{a2} > pK_{a1}$) \rightarrow sens direct thermodynamiquement favorisé.

Si $K^0 < 1$ ($pK_{a2} < pK_{a1}$) \rightarrow sens inverse thermodynamiquement favorisé.

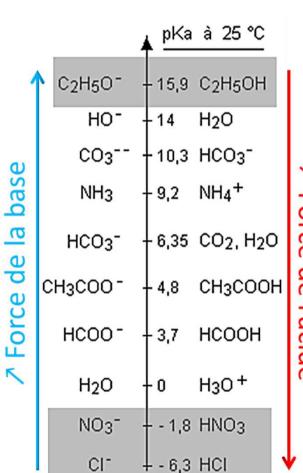
Définition: Réaction quantitative

- *Réaction quantitative* $\iff K^0 > 10^2$: On considérera la réaction totale.
- *Réaction non-quantitative* $\Leftrightarrow 10^{-2} < K^0 < 10^2$:
 On ne peut négliger aucun réactif ni produit. L'avancement final se déduit à l'aide de la constante de réaction K.
- Réaction non-quantitative et peu avancée (nulle) $\iff K^0 < 10^{-2}$:
 On peut négliger la quantité de produit formée devant la quantité de réactifs.

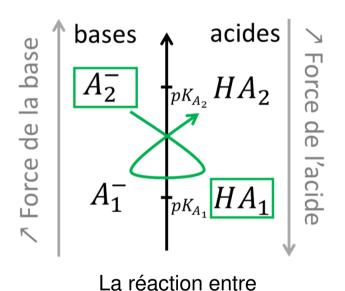

$$CH_3COOH_{(aq)} + NH_{3}{}_{(aq)} \leftrightarrows CH_3COO^{-}{}_{(aq)} + NH_4{}^{+}{}_{(aq)}$$

$$K^0 = 10^{(pK_{a2} - pK_{a1})}$$

Définition: Réaction quantitative

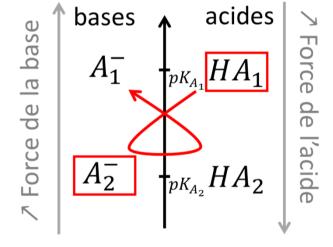

- *Réaction quantitative* $\iff K^0 > 10^2$: On considérera la réaction totale.
- *Réaction non-quantitative* $\Leftrightarrow 10^{-2} < K^0 < 10^2$: On ne peut négliger aucun réactif ni produit. L'avancement final se déduit à l'aide de la constante de réaction K.
- Réaction non-quantitative et peu avancée (nulle) $\iff K^0 < 10^{-2}$:
 On peut négliger la quantité de produit formée devant la quantité de réactifs.

$$K^0 = 10^{(9,2-4,8)} = 10^{4,4} > 10^2$$
 Réaction quantitative

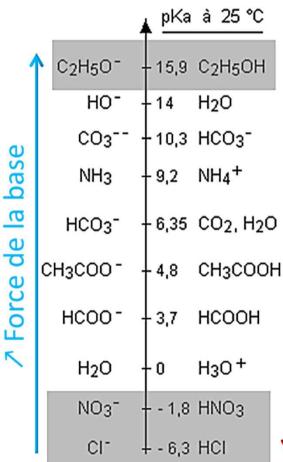


Applications

- 1) Écrire la réaction d'autoprotolyse de l'hydrogénocarbonate HCO_3^- . Cette réaction est-elle quantitative?
- 2) Écrire la réaction entre l'acide acétique et l'hydrogénocarbonate HCO_3^- . Cette réaction est-elle quantitative?

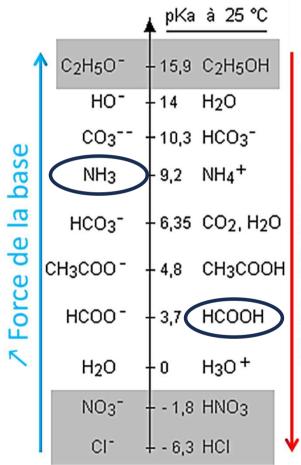


Une autre façon d'aborder les choses : La règle du gamma



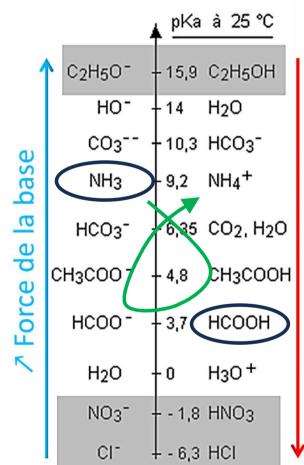
 HA_1 et A_2^-

est favorisée


La réaction entre HA_1 et $A_2^$ n'est pas favorisée

Une autre façon d'aborder les choses :

La règle du gamma


$$CH_3COOH_{(aq)} + NH_{3(aq)} \leftrightarrows CH_3COO^-_{(aq)} + NH_4^+_{(aq)}$$

Une autre façon d'aborder les choses : La règle du gamma

$$CH_{3}COOH_{(aq)} + NH_{3}{}_{(aq)} \leftrightarrows CH_{3}COO^{-}{}_{(aq)} + NH_{4}^{+}{}_{(aq)}$$

Gamma γ vers la droite sens direct thermodynamiquement favorisé

Et le pH dans tout ça?

pH d'une solution d'acide fort

Pas vrai si la concentration en soluté apportée c_{ini} est très faible!

Etat	Avancement volumique	$AH_{(aq)}$ -	$H_2O_{(l)}$	\rightarrow $A^{-}_{(aq)}$ \dashv	$-H_3O^+_{(aq)}$
Initial	x = 0	C _{ini}		0	$10^{-7} \approx 0$
Intermédiaire	х	$c_{ini} - x$	En excès (solvant)	X	χ
Final	x_f	0	(Solvalit)	$x_f = c_{ini}$	$x_f = c_{ini}$

$$[H_3O^+]_f = c_{ini} \implies pH = -\log(c_{ini})$$

On néglige l'autoprotolyse de l'eau qui consomme des ions oxoniums

Application

Déterminer le pH à l'équilibre d'une solution d'acide chlorhydrique dont la concentration en soluté apporté vaut $c_{ini}=10^{-4}~{
m mol.L^{-1}}$. Même question dans le cas $c_{ini}=10^{-8}~{
m mol.L^{-1}}$.

pH d'une solution de base forte

Pas vrai si la concentration en soluté apportée c_{ini} est très faible!

Etat	Avancement volumique	$A^{-}_{(aq)}$	$H_2O_{(l)}$	$\rightarrow HA_{(aq)} +$	$HO^{(aq)}$
Initial	x = 0	c _{ini}		0	$10^{-7} \approx 0$
Intermédiaire	x	$c_{ini} - x$	En excès (solvant)	x	X
Final	x_f	0	(301vaiit)	$x_f = c_{ini}$	$x_f = c_{ini}$

$$[HO^-]_f = c_{ini} \implies pH = pK_e + \log(c_{ini})$$

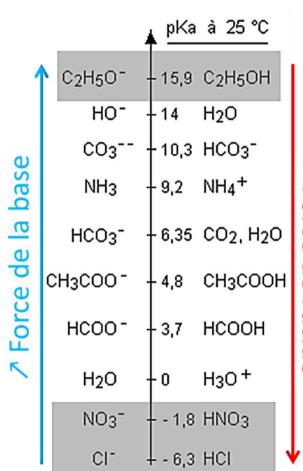
On néglige l'autoprotolyse de l'eau qui consomme des ions hydroxydes

Déterminer le pH à l'équilibre d'une solution de soude dont la concentration en soluté apporté vaut $c_{ini}=10^{-4}~{
m mol.L^{-1}}$.

Même question dans le cas $c_{ini} = 10^{-8} \text{ mol.L}^{-1}$.

pH d'une solution d'acide faible

Pas vrai si la concentration en soluté apportée c_{ini} est très faible!


Etat	Avancement volumique	$AH_{(aq)}$ -	$+ H_2O_{(l)} \rightleftharpoons$	$A^{-}_{(aq)}$	$-H_3O^+_{(aq)}$
Initial	x = 0	c_{ini}		0	$10^{-7} \approx 0$
Intermédiaire	х	$c_{ini} - x$	En excès (solvant)	х	X
Final	x_f	$c_{ini} - x_f$	(Solvant)	x_f	x_f

$$K_{a} = \frac{[A^{-}]_{f} \cdot [H_{3}O^{+}]_{f}}{[AH]_{f} \cdot c^{0}} \approx \frac{x_{f} \cdot x_{f}}{c_{ini}} \qquad \boxed{pH = -\log(x_{f}) = \frac{1}{2}(pK_{a} - \log(c_{ini}))}$$

Acide faiblement dissocié : $c_{ini} \gg x_f$

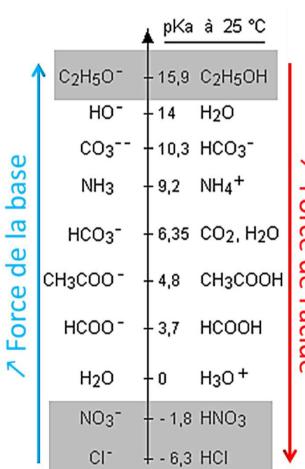
On néglige l'autoprotolyse de l'eau qui consomme des ions oxoniums

Déterminer le pH à l'équilibre d'une solution d'acide méthanoïque HCOOH dont la concentration en soluté apporté vaut $c_{ini} = 10^{-1} \text{ mol.L}^{-1}$.

pH d'une solution de base faible

Pas vrai si la concentration en soluté apportée c_{ini} est très faible!

Etat	Avancement volumique	$A^{-}_{(aq)}$	$H_2O_{(l)}$	$\rightarrow HA_{(aq)} +$	$HO^{(aq)}$
Initial	x = 0	c_{ini}	En excès (solvant)	0	$10^{-7} \approx 0$
Intermédiaire	x	$c_{ini} - x$		χ	x
Final	x_f	$c_{ini} - x_f$		x_f	x_f


$$K_{b} = \frac{K_{e}}{K_{a}} = \frac{[HA]_{f} \cdot [HO^{-}]_{f}}{[A^{-}]_{f} \cdot c^{0}} \approx \frac{x_{f} \cdot x_{f}}{c_{ini}}$$

$$pH = pK_{e} + \log(x_{f})$$

$$pH = \frac{pK_{e}}{2} + \frac{1}{2}(pK_{a} + \log(c_{ini}))$$
Base faiblement dissocié : $c_{ini} \gg x_{f}$

On néglige l'autoprotolyse de l'eau qui consomme des ions oxoniums

Déterminer le pH à l'équilibre d'une solution d'ammoniac dont la concentration en soluté apporté vaut $c_{ini} = 10^{-1} \text{ mol.L}^{-1}.$

Et si plusieurs couples présents?

Si on connait le pH de la solution: Équation de Henderson-Hasselbalch et Diagramme de prédominance

$$\frac{[A^-]_f}{[AH]_f} = 10^{pH-pK_a} \iff pH = pK_a + \log\left(\frac{[A^-]_f}{[AH]_f}\right)$$

« Démonstration » à connaitre

Diagramme de prédominance

$$[AH] > [A^{-}]$$

$$AH = [A^{-}]$$

$$[AH] = [A^{-}]$$

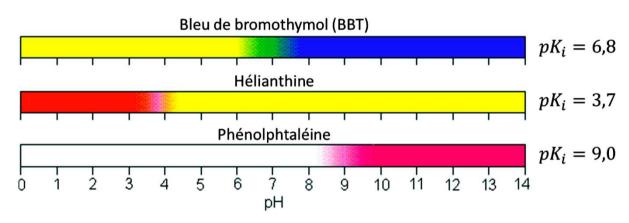
$$[AH] < [A^{-}]$$

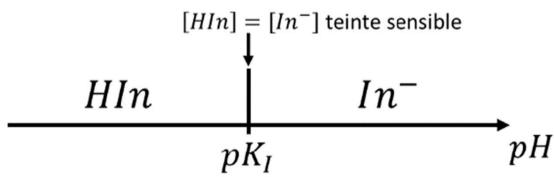
$$pH$$

$$pK_{A}$$

1 - 6,3 HCI

Force de la

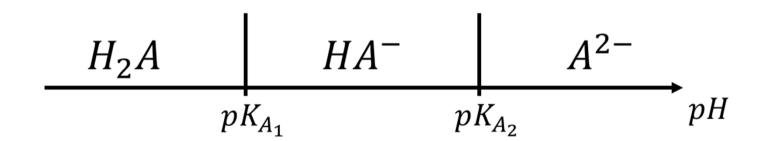

pKaà25 °C

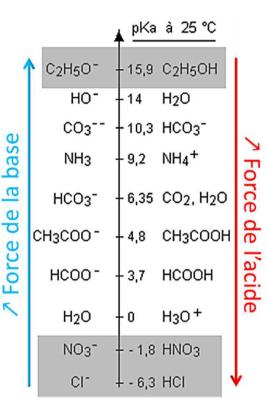

Application

- On dissout du carbonate de sodium solide Na_2CO_3 (concentration totale dissoute notée $c_0=1,0.10^{-2}$ mol.L⁻¹) dans un litre d'eau.
- On mesure le pH à l'équilibre et on obtient pH = 8.

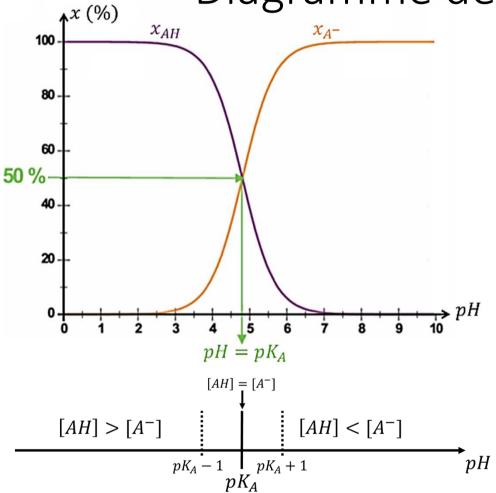
Quelle est la composition finale de la solution ?

Si on connait le *pH* de la solution: Diagramme de prédominance



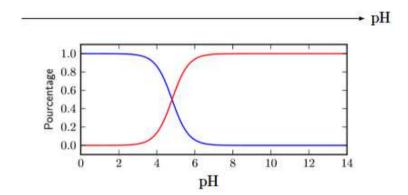


Si on connait le pH de la solution: Diagramme de prédominance

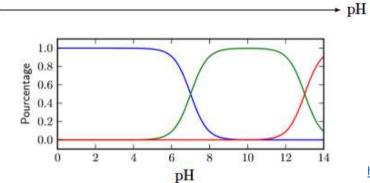

Diagramme de prédominance d'un diacide

Dioxyde de carbone dissous	$(H_2O, CO_2)/HCO_3^-$	Couple faible	
Ion hydrogénocarbonate (amphotère)			
Ion hydrogénocarbonate (amphotère)	HCO_3^{-}/CO_3^{2-}	Couple faible	
Ion carbonate	11203 7003		

Si on connait le pH de la solution: Diagramme de *distribution*

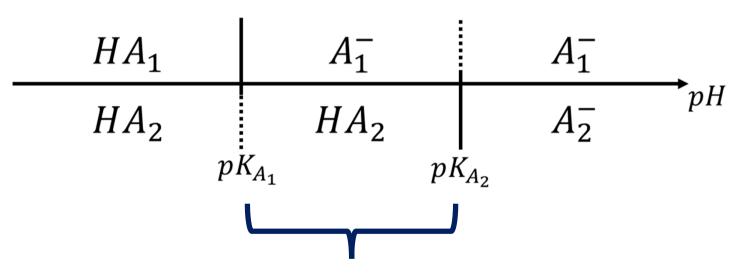


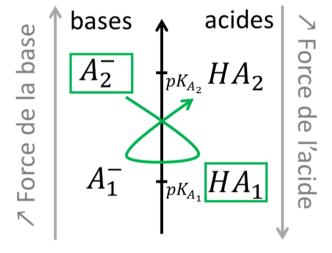
$$x_{AH} = \frac{[AH]_f}{[AH]_f + [A^-]_f}$$
$$x_{A^-} = \frac{[A^-]_f}{[AH]_f + [A^-]_f}$$


$$\frac{[A^-]_f}{[AH]_f} = 10^{pH - pK_a}$$

À partir des diagrammes de distribution, construire le diagramme de prédominance et en déduire les pK_A des couples impliqués.

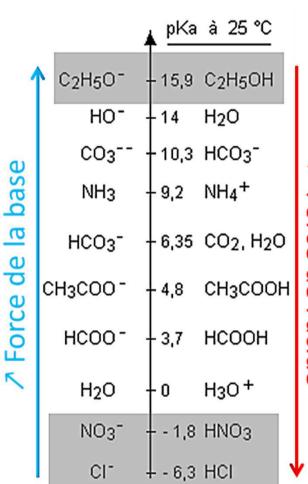
1/ Couple de l'acide acétique :




2/ Couples du diacide sulfureux H_2S :

http://prepa.blois.free.fr/SITEMPSI/PhyMPSI/wa files/Chapitre18.pdf

Utilisation des diagrammes de prédominance pour prévoir des réactions



 A_1^- et HA_2 peuvent coexister \rightarrow pas de réaction

1/ Les espèces NH_3 et CH_3COOH peuventelles coexister ?

 $2/CO_2$, H_2O et CO_3^{2-} peuvent-ils coexister?

Prévoir l'équilibre : méthode de la réaction prépondérante

- 1. Placer les couples en présence sur une échelle des pK_a (avec ceux de l'eau, toujours présents). Les bases sont à gauche, les acides à droite!
- 2. Entourer les espèces chimiques présentes.
- 3. Grâce à la règle du gamma γ , identifier la *réaction prépondérante*, c'est-à-dire la réaction dont la constante de réaction est la plus élevée. Il s'agit du plus grand γ direct, ou du plus petit γ indirect.
- 4. Si la réaction prépondérante est *quantitative* (R.P.Q.), on la suppose totale et on cherche alors le réactif limitant. On détermine ainsi les quantités de matière de chaque espèce produite, puis on retourne au **3** pour trouver la réaction prépondérante suivante.
- 4. Si la réaction prépondérante est non-quantitative, on utilise l'équilibre associé pour calculer les concentrations à l'équilibre des différentes espèces, ainsi que le pH. On parle alors d'équilibre de contrôle et on appelle cette réaction la *Réaction Prépondérante d'Équilibre* (R.P.E.). On a alors terminé.

- On mélange en solution aqueuse de l'acide éthanoïque $(c_{0,1}=0,2~\mathrm{mol.\,L^{-1}})$ et de l'ammoniac $(c_{0,2}=0,1~\mathrm{mol.\,L^{-1}})$.
- On donne les pK_A des couples suivants :

$$NH_4^+/NH3: pK_{A1} = 9,3$$

 $CH_3COOH/CH_3COO^-: pK_{A2} = 4,8$

Quel est l'état final du système ?