Logique mathématique – Exercices

Sommes et produits

Exercice 1.1 Développer si nécessaire et calculer avec $n \in \mathbb{N}$:

$$a = \sum_{k=3}^{10} (k+2)(k-1)$$
 $b = \sum_{i+j=n} 2i + j \text{ avec } i, j \in \mathbb{N}$

Exercice 1.2 Faire apparaître une somme ou un produit téléscopique :

$$c = \sum_{k=1}^{n} \frac{k}{(k+1)!}$$
 $d = \prod_{k=2}^{n-1} \frac{\ln(k)}{\ln(k+1)}$

Exercice 1.3 Soit $M \in \mathbb{N}^*$ et $a_0, a_1, \dots, a_M \in \mathbb{R}$. Montrer que :

$$\sum_{k=1}^{M} k(a_{k-1} - a_k) = \left(\sum_{k=0}^{M-1} a_k\right) - Ma_M$$

Exercice 1.4 Parmi les formules suivantes, lesquelles sont vraies. Donner un contre exemple pour celles qui sont fausses :

(1)
$$\sum_{k=1}^{n} (\alpha + a_k) = \alpha + \sum_{k=1}^{n} a_k$$

(2)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$(3) \sum_{k=1}^{n} (\alpha a_k) = \alpha \sum_{k=1}^{n} a_k$$

$$(4) \sum_{k=1}^{n} a_k^{\alpha} = \left(\sum_{k=1}^{n} a_k\right)^n$$

(5)
$$\sum_{k=1}^{n} (a_k b_k) = \left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right)$$

(6)
$$\prod_{\substack{k=1\\n}}^{n} (\alpha a_k) = \alpha \prod_{\substack{k=1\\n}}^{n} a_k$$

(7)
$$\prod_{k=1}^{n} (a_k b_k) = \prod_{k=1}^{n} a_k \prod_{k=1}^{n} b_k$$

(8)
$$\prod_{k=1}^{n-1} (a_k + b_k) = \left(\prod_{k=1}^{n} a_k\right) + \left(\prod_{k=1}^{n} b_k\right)$$

Exercice 1.5

- 1. Déterminer des réels a, b et c tels que, pour tout entier $k \geq 2$: $\frac{1}{k(k^2 - 1)} = \frac{a}{k} + \frac{b}{k - 1} + \frac{c}{k + 1}$
- 2. Pour tout entier $n \ge 2$, en déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k^2-1)}$.
- 3. Déterminer de même $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ où $n \in \mathbb{N}^*$.

Exercice 1.6 Soit
$$n \in \mathbb{N}^*$$
, on note $P_n = \sum_{\substack{k=0 \ k \text{ pair}}}^n k \text{ et } I_n = \sum_{\substack{k=0 \ k \text{ impair}}}^n k$.

Donner l'expression de I_n en fonction de P_{2n} et P_n . Calculer P_{2j} et I_{2j+1} .

Exercice 1.7

Considérons $r \in \mathbb{R}$, $n \in \mathbb{N}$, $a_0, a_1, \ldots, a_n \in \mathbb{R}$ et une fonction polynomiale

$$f: x \mapsto \sum_{k=0}^{n} a_k x^k$$

Montrer que f(r) = 0 si et seulement s'il existe une fonction polynomiale gtelle pour tout $x \in \mathbb{R}$, f(x) = (x - r)g(x)

Utilisant cette approche, factoriser $x^5 + 3x^4 - 2x^2 + 3x - 2$ par x + 2.

1.
$$\binom{n}{1} + \binom{n}{2} + \binom{n}{3} = 5n$$
 d'inconnue $n \in \mathbb{N}, n \geq 3$.

(1)
$$\sum_{k=1}^{n} (\alpha + a_k) = \alpha + \sum_{k=1}^{n} a_k$$
 (2) $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$ Coefficients binomiaux

(3) $\sum_{k=1}^{n} (\alpha a_k) = \alpha \sum_{k=1}^{n} a_k$ (4) $\sum_{k=1}^{n} a_k^{\alpha} = \left(\sum_{k=1}^{n} a_k\right)^{\alpha}$ Exercise 1.8 Résoudre:

1. $\binom{n}{1} + \binom{n}{2} + \binom{n}{3} = 5n$ d'inconnue $n \in \mathbb{N}, n \geq 3$.

(5) $\sum_{k=1}^{n} (a_k b_k) = \left(\sum_{k=1}^{n} a_k\right)^{n} \left(\sum_{k=1}^{n} b_k\right)$ (6) $\prod_{k=1}^{n} (\alpha a_k) = \alpha \prod_{k=1}^{n} a_k$

(7) $\prod_{k=1}^{n} (a_k b_k) = \prod_{k=1}^{n} a_k \prod_{k=1}^{n} b_k$ (8) $\prod_{k=1}^{n} (a_k + b_k) = \left(\prod_{k=1}^{n} a_k\right) + \left(\prod_{k=1}^{n} b_k\right)^{n}$ d'inconnue $n, p \in \mathbb{N}^*$ avec $p < n$.

Exercice 1.9 Calculer
$$S_n = \sum_{k=1}^{n-1} (-1)^k k \binom{n}{k}$$
 où n entier, $n \ge 2$.

Exercice 1.10 Montrer que
$$\sum_{k=0}^{2n+1} {2n+1 \choose k} = 2\sum_{k=0}^n {2n+1 \choose k}$$
, où $n \in \mathbb{N}$. En déduire la valeur de $\sum_{k=0}^n {2n+1 \choose k}$.

Exercice 1.11 Somme de carrés, de cubes

1. Montrer par récurrence sur q que, pour tout (p,q) avec p < q:

$$\sum_{k=p}^{q} {k \choose p} = {p \choose p} + {p+1 \choose p} + \dots + {q \choose p} = {q+1 \choose p+1}$$

2. En déduire les sommes suivantes pour $n \in \mathbb{N}$:

$$A_n = \sum_{k=0}^{n} k(k-1)(k-2), \qquad B_n = \sum_{k=0}^{n} k(k-1), \qquad C_n = \sum_{k=0}^{n} k$$

3. Déterminer les réels $a, b, c, d \in \mathbb{R}$ tel que

$$k^{3} = ak(k-1)(k-2) + bk(k-1) + ck + d$$

4. En déduire $\sum_{k=0}^{n} k^3$.

Symbolique et logique

Exercice 1.12 Traduire en symboles mathématiques les assertions suivantes puis donner leur négation.

- 1. Pour tout réel strictement positif a, il existe un réel positif b tel que, pour tout réel x, si |x| < b alors $|e^x 1| < a$.
- 2. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Il existe un réel positif C tel que, pour tout réel x, on ait $f(x) \in]-C, C[$.
- 3. Pour tout nombre réel A, il existe un réel positif B tel que, pour tout réel x, si x>B alors $\ln(x)>A$.

4. Pour tout entier naturel N, il existe un entier naturel $k \geq N$ tel que $sin(\frac{k\pi}{2}) \neq 1$.

Exercice 1.13 Soit $f:[a,b]\to\mathbb{R}$ une fonction. Traduire les phrases suivantes en termes mathématiques puis les nier (en termes mathématiques puis en français si possible).

- 1. f est croissante.
- 2. f est majorée.
- 3. f est bornée.
- 4. f est constante.
- 5. f est la fonction nulle.

Exercice 1.14 Pour chacune des situation, proposer deux ensembles réels non vides, X et Y, la vérifiant :

- 1. $\forall y \in Y, \exists x \in X / y = x + 3,$
- $2. \exists x \in X / \forall y \in Y, |x y| < 1.$

Exercice 1.15 Descriptions d'ensembles

- 1. Soit E un sous-ensemble de $\mathbb{R}_+.$ Traduire en symboles mathématiques les assertions suivantes :
- "On peut trouver dans E un nombre rationnel strictement positif aussi petit qu'on veut",
- "On peut trouver dans E un nombre rationnel aussi grand qu'on veut",
- "Il existe dans E des éléments aussi proches de 3 qu'on veut".
- 2. Donner, pour chaque assertion, un ensemble la vérifiant.

Exercice 1.16 Implications

Dire si les assertions suivantes sont vraies ou fausses. Justifier votre réponse.

- 1. Si l'égalité $x^2 16 = 0$ est vraie, alors x = 4.
- 2. Si $x \in \{-4, 1, 4\}$ alors l'égalité $x^2 16 = 0$ est vraie.
- 3. Si l'égalité $x^2 16 = 0$ est vraie alors $x \in \{-4, 1, 4\}$.
- 4. Si $x \in]-3, 2[\cup]4, +\infty[$ alors $x \in]-3, +\infty[$.
- 5. Si $x \in]-3, +\infty[$ alors $x \in]-3, 2[\cup]4, +\infty[$.
- 6. Soit $x \in \mathbb{R}$. Pour que $x^2 + 1$ soit strictement supérieur à 10, il faut que x soit strictement supérieur à 3.

- 7. Soit $x \in \mathbb{R}$. Pour que $x^2 + 1$ soit strictement supérieur à 10, il suffit que x soit strictement inférieur à -3.
- 8. Pour qu'un entier naturel soit pair, il suffit qu'il soit divisible par 4.
- 9. Pour qu'un entier naturel soit divisible par 4, il faut qu'il soit pair.

Exercice 1.17 Compléter par \Leftrightarrow , \Rightarrow ou \Leftarrow afin que l'assertion soit vraie quels que soient les prédicats p(x) et q(x).

Donner un contre-exemple pour les implications fausses.

(i)
$$(\forall x (p(x) \text{ et } q(x))) \dots ((\forall x p(x)) \text{ et } (\forall x q(x)))$$

(ii)
$$(\forall x (p(x) \text{ ou } q(x))) \dots ((\forall x p(x)) \text{ ou } (\forall x q(x)))$$

(iii)
$$\left(\exists x \ \left(p(x) \ \text{ et } \ q(x)\right)\right) \dots \left(\left(\exists x \ p(x)\right) \ \text{ et } \left(\exists x \ q(x)\right)\right)$$

(iv)
$$\left(\exists x \ \left(p(x) \ \text{ou} \ q(x)\right)\right) \dots \left(\left(\exists x \ p(x)\right) \ \text{ou} \ \left(\exists x \ q(x)\right)\right)$$

Raisonnements

Méthode: Disjonction de Cas

Exercice 1.18 Montrer que pour tout $x, y \in \mathbb{R}$:

$$\max(x, y) + \min(x, y) = x + y$$

Exercice 1.19 Montrer que pour tout $x, y \in \mathbb{R}$:

$$\max(x,y) = \frac{|x-y| + x + y}{2}$$

Proposer une expression de min(x, y).

Exercice 1.20 Un prisonnier doit choisir entre deux portes identiques, l'une est une sortie et l'autre une cellule. Devant chaque porte se trouve un gardien; l'un dit toujours la vérité et l'autre ne fait que mentir.

Le prisonnier a le droit de poser une seule question à l'un des deux gardiens pour faire son choix. Pourriez-vous le conseiller?

Méthode: RÉCURRENCE

Exercice 1.21 Travail sur les indices

On considère la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, \qquad (n+2)I_n = (n+1)I_{n+2}$$

- 1. Exprimer I_{n+2} en fonction de I_n
- 2. Exprimer I_{n+1} en fonction d'un terme de rang inférieur.
- 3. Exprimer I_{n+1} en fonction d'un terme de rang supérieur.
- 4. Exprimer I_{2k} en fonction d'un terme de rang inférieur.
- 5. Exprimer I_{2k+1} en fonction d'un terme de rang inférieur.

Exercice 1.22

Montrer que les propriétés suivantes sont héréditaire : c'est-à-dire que pour tout $n \in \mathbb{N}^*$, les implications $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$ sont vraies.

- 1. $\mathcal{P}(n): 5^n > n$,
- 2. $Q(n): 1+2+\ldots+n = \frac{1}{8}(2n+1)^2$. Que dire de Q?

Exercice 1.23 Montrer par récurrence :

- 1. $\forall n > 5, \quad 2^n > n^2$
- $2. \forall n \geq 4, \quad n! \geq 2^n$
- 3. $\forall n \in \mathbb{N}^*, \quad 1 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$

Exercice 1.24

1. Montrer que pour tout $n \geq 2$, avec $x_1, x_2, \ldots, x_n \in \mathbb{R}_+^*$:

$$\ln (x_1 \times x_2 \times \dots \times x_n) = \sum_{k=1}^n \ln(x_k)$$

2. Soit $n \in \mathbb{N}^*$, donner une expression simplifiée de $\ln \left(\prod_{k=1}^n e^{\frac{2k}{n+1}} \right)$.

Exercice 1.25

Soit $I_0 = \sqrt{\pi}$, $I_1 = 0$ vérifiant pour tout $n \in \mathbb{N}$ $I_{n+2} = \frac{n+1}{2}I_n$.

Montrer, pour tout $p \in \mathbb{N}$: $I_{2p+1} = 0$ et $I_{2p} = \frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$.

Exercice 1.26 Montrer que pour tout $n \in \mathbb{N}^*$ on a : $\sum_{p=1}^n \frac{1}{p^2} \le 2 - \frac{1}{n}$.

Exercice 1.27 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant :

$$\begin{cases} u_0 = 7 \\ u_1 = -11 \\ \forall n \in \mathbb{N} \quad u_{n+2} + u_{n+1} - 6u_n = 0 \end{cases}$$

Mettant en oeuvre une récurrence sur deux rang, montrer que

$$\forall n \in \mathbb{N}, \quad u_n = 2^{n+1} + 5 \times (-3)^n$$

Exercice 1.28 Démontrer par récurrence que $\forall n \in \mathbb{N}, \binom{2n}{n} \geq 2^n$.

Exercice 1.29 Soit $c \in \mathbb{N}^*$. On suppose que pour tout $x, y, n \in \mathbb{N}^*$,

$$u_1(x,y) = \frac{x}{x+y}$$
 et $u_{n+1}(x,y) = u_n(x+c,y)\frac{x}{x+y} + u_n(x,y+c)\frac{y}{x+y}$.

Montrer que la suite $(u_n(x,y))_{n\in\mathbb{N}^*}$ est constante.

Méthode: Autres raisonnements

Exercice 1.30 Soit x_0, x_1, \ldots, x_n $(n \in \mathbb{N}^*)$ dans [0; 1] tels que :

$$0 \le x_0 \le x_1 \le \dots \le x_n \le 1$$

Montrer qu'il existe deux de ces réels qui sont distants d'au plus $\frac{1}{n}$.

Exercice 1.31

Soit x et y réels tels que, pour tout $\varepsilon > 0$, $x < y + \varepsilon$. Montrer $x \le y$.