Applications linéaires – Exercices

APPLICATIONS LINÉAIRES

Exercice 18.1 Soit l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f(x, y, z) = (-y + z; x - z; -x + z)$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer Ker(f) et Im(f), ainsi qu'une base de chacun d'eux.
- 3. f est-elle injective? surjective? bijective?

Exercice 18.2 Trouver une application linéaire f de \mathbb{R}^3 dans \mathbb{R}^4 dont l'image est engendrée par (1, 2, 0, -4) et (2, 0, -1, -3).

Exercice 18.3 Soient $n \in \mathbb{N}$ et u et v les applications de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définies par : $\forall P \in \mathbb{R}[X], \ u(P) = -nP + 2XP'$ et $v(P) = nXP - X^2P'$.

- 1. Montrer que u et v sont des endomorphismes de $\mathbb{R}[X]$.
- 2. Montrer que $u \circ v v \circ u = 2v$.
- 3. En déduire que $u \circ v^n v^n \circ u = 2nv^n$.

Exercice 18.4 Soient h = f + g avec $f : (x, y, z) \mapsto (2x, 2y, 2z)$ et $g : (x, y, z) \mapsto (0, 3x, 2x - y)$.

- 1. Calculer g^2 (Rappel $g^2 = g \circ g$), g^3 , puis g^n pour $n \in \mathbb{N}$.
- 2. En déduire l'expression de h^n pour $n \in \mathbb{N}$.

Exercice 18.5

Méthode

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ telle que $f^3 = f$.

- 1. Donner des exemples de telles applications.
- 2. Montrer que Ker(f) et Im(f) sont supplémentaires.

RANG

Exercice 18.6 Déterminer le rang des applications linéaires, préciser une base de leur noyau et de leur image :

1. $\varphi_1 : \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (x - 3y - 2z, y - 4z, z).$

2. $\varphi_2 : \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (x + y + 2z, x - 2y + z, 2x - y + 3z).$

3. $\varphi_3 : \mathbb{C}_2[X] \to \mathbb{C}^3, \ P \mapsto (P(0), P'(0), P''(0)).$

4. $\varphi_4: \mathbb{C}^3 \to \mathbb{C}_3[X], (a, b, c) \mapsto a(X^3 + X) + b(X^2 + 1) + cX.$

Exercice 18.7 Inéqulité de Sylvester

- 1. Soit E, F, G des K-espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que : $\operatorname{rg}(gf) \leq \min(\operatorname{rg}(f), \operatorname{rg}(g))$.
- 2. Soit E un \mathbb{K} -ev de dimension finie et $f,g\in\mathcal{L}(E)$. Montrer que :

$$rg(f) + rg(g) - dim(E) \le rg(gf) \le min(rg(f), rg(g))$$

Exercice 18.8

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$
- 2. En déduire $|\operatorname{rg}(f) \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$

Exercice 18.9 Soient E un \mathbb{R} -e.v. de dimension finie et $f \in \mathcal{L}(E)$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $\operatorname{Ker}(f^p) = \operatorname{Ker}(f^{p+1})$.

- 1. Montrer que, pour tout $q \geq p$, on a : Ker $(f^q) = \text{Ker}(f^p)$.
- 2. Montrer que $E = \text{Ker}(f^p) \oplus \text{Im}(f^p)$.

Exercice 18.10 Soient E de dimension finie et $f \in \mathcal{L}(E)$.

Montrer que les assertions suivantes sont équivalentes :

- (i) $\operatorname{Im}(f) = \operatorname{Im}(f^2)$
- (ii) $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$
- (iii) $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0_E\}$
- (iv) $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$
- (v) E = Ker (f) + Im (f)

Exercice 18.11 Endomorphisme nilpotent

Classique

1. On considère $g \in \mathcal{L}(\mathbb{R}^3)$ tel que : $g^2 \neq 0$ et $g^3 = 0$, ce qui signifie que $g \circ g$ n'est pas l'endomorphisme nul, mais que $g \circ g \circ g$ est l'endomorphisme nul. On se propose de montrer que $\operatorname{Im}(g^2) = \operatorname{Ker}(g)$.

- a) Justifier qu'il existe un vecteur u de \mathbb{R}^{3} tel que $g^{2}\left(u\right)\neq0$.
- b) Montrer que $(u, g(u), g^2(u))$ est une base de \mathbb{R}^3 , que l'on notera \mathcal{B}' .
- c) Déterminer Im(g) et donner sa dimension. En déduire une base de Ker(g). Pour finir, déterminer $\text{Im}(g^2)$ puis conclure.
- 2. Généralisation : soit $f \in \mathcal{L}(\mathbb{R}^n)$ telle que $f^n = 0_{\mathcal{L}(\mathbb{R}^n)}$ et f^{n-1} non nulle.
 - a) Montre que : $\exists v \in \mathbb{R}^n \; (v, f(v), f^2(v), \dots, f^{n-1}(v))$ soit une base de \mathbb{R}^n .
 - b) Donner une base de $\operatorname{Im}(f)$, $\operatorname{Ker}(f)$, $\operatorname{Im}(f^{j})$, $\operatorname{Ker}(f^{k})$ pour $j, k \in [1; n]$
 - c) Conclure.

Exercice 18.12 Suites récurrentes linéaires d'ordre 2

Objectif : Démontrer le théorème introduit en début d'année.

Soir $F = \{(u_n) \in \mathbb{R}^{\mathbb{N}}; \forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n \}$

- 1. Montrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 2. Montrer que l'application $\varphi : F \to \mathbb{R}^2$ telle que $\varphi((u_n)) = (u_0, u_1)$ est un isomorphisme d'espaces vectoriels. En déduire la dimension de F.
- 3. Trouver les suites géométriques de F.
- 4. En déduire une base de F et conclure sur la forme des suites de F.

Exercice 18.13

Soit f un endomorphisme de E un \mathbb{R} -espace vectoriel de dimension fini.

- 1. Montrer que si $f \in \mathcal{GL}(E)$ alors on a bien $E = \text{Ker}(f) \oplus \text{Im}(f)$.
- 2. On suppose maintenant que f admet pour polynôme annulateur :

$$P = \sum_{k=1}^{p} a_k X^k = a_1 X + a_2 X^2 + \dots + a_p X^p \text{ avec } a_1 \neq 0 \text{ et } p \geq 1$$

- a) Soit y un élément de $\operatorname{Im}(f) \cap \operatorname{Ker}(f)$.
- (i) Montrer qu'il existe un vecteur x de E tel que y = f(x) et $f^2(x) = 0$.
- (ii) En déduire que, pour tout entier k supérieur ou égal à 2, on a $f^k(x) = 0$ puis déterminer y.
- b) Établir que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Projecteurs et symétrie

Exercice 18.14 Dans $\mathbb{R}_3[X]$, donner l'expression de la symétrie par rapport à $\text{Vect}(1, 1 + X^2)$ parallèlement à $\text{Vect}(X + X^2, 1 - X^3)$.

Exercice 18.15 Soit E est un espace vectoriel de dimension finie $n \ge 1$ et $p \in \mathcal{L}(E)$.

Montrer que p est un projecteur si et seulement si :

$$\dim(\operatorname{Ker}(p)) + \dim(\operatorname{Ker}(\operatorname{Id}_E - p)) = \dim(E)$$

Exercice 18.16 Soient E un \mathbb{R} -e.v. et p et q deux endomorphismes de E. Montrer l'équivalence suivante :

(i) $p \circ q = p$ et $q \circ p = q \Leftrightarrow$ (ii) p et q sont deux projecteurs de même noyau

HYPERPLANS

$$H \oplus \text{Vect}(\mathbf{u}) = E$$

1. Soit s la symétrie par rapport à Vect(u) parallèlement à H.

Montrer que, si un endomorphisme f de E commute avec s, alors H et Vect(u) sont stables par f.

2. Prouver que les seuls endomorphismes de E qui commutent avec tous les autres sont les homothéties.

Exercice 18.18 Soient E un \mathbb{R} -e.v. de dimension 2, u un vecteur non nul de E et φ une forme linéaire non nulle sur E.

- 1. Que dire de $\operatorname{Ker} \varphi$?
- 2. Soit $f: E \to E$, $x \mapsto x + \varphi(x)u$. Montrer que $f \in \mathcal{L}(E)$ et que l'ensemble des points fixes de f est une droite vectorielle.
- 3. Montrer que:
- (i) f est un isomorphisme si et seulement si $\varphi(u) \neq -1$
- (ii) f est involutive $(f \circ f = \mathrm{Id}_E)$ si et seulement si $\varphi(u) = -2$.