DM7

à rendre le mardi 26 novembre 2024

Partie A – Convergence des quatre suites

Pour tout $n \in \mathbb{N}^*$, on pose :

$$s_n = \sum_{k=1}^n \frac{1}{k^2}, \quad u_n = \sum_{k=1}^n \frac{1}{(2k)^2}, \quad v_n = \sum_{k=0}^n \frac{1}{(2k+1)^2}, \quad w_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^2}$$

- 1.a) Montrer que la suite $(s_n)_{n\in\mathbb{N}^*}$ est croissante.
- b) Montrer que pour tout $k \geq 2$, on a :

$$\frac{1}{k^2} \le \int_{k-1}^k \frac{1}{t^2} \mathrm{d}t.$$

En déduire, pour tout $n \in \mathbb{N}^*$, l'inégalité :

$$s_n \le 2 - \frac{1}{n}.$$

- c) En déduire la convergence de $(s_n)_{n\in\mathbb{N}^*}$. On note S sa limite et on admet que $S=\frac{\pi^2}{6}$.
- 2. a) Pour tout $n \in \mathbb{N}^*$, établir des relations entres les suites :
 - exprimer u_n en fonction de s_n ;
 - exprimer v_n en fonction de s_{2n+1} et u_n ;
 - exprimer w_{2n} en fonction de v_{n-1} et u_n ;
 - exprimer w_{2n+1} en fonction de v_n et u_n .
- b) En déduire la convergence des suites $(u_n)_{n\in\mathbb{N}^*}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}^*}$.

On note U, V et W leur limite. Montrer que :

$$U = \frac{1}{4}S, \quad V = \frac{3}{4}S, \quad W = \frac{1}{2}S$$

et en déduire leur valeur.

Indication: Si les suites (w_{2n}) et (w_{2n}) convergent vers la même limite ℓ alors (w_n) converge aussi vers ℓ .

Partie B - Calcul de Zeta(2)

Pour tout $n \in \mathbb{N}^*$, on note D_n la fonction définie sur \mathbb{R} par :

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos(kx).$$

1. Démontrer que pour tout entier $n \geq 1$ et tout réel x non multiple de 2π , on a :

$$D_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)}.$$

2. Pour tout $n \geq 1$, on note L_n l'intégrale :

$$L_n = \int_0^\pi x D_n(x) dx$$

- a) Calculer l'intégrale $\int_0^\pi x \cos(kx) dx$ pour tout entier $k \ge 1$.
- b) En déduire que :

$$L_n = \frac{\pi^2}{4} - \sum_{k=1}^n \frac{1}{k^2} + \sum_{k=1}^n (-1)^k \frac{1}{k^2}.$$

3. On définit la fonction suivante :

$$f(x) = \begin{cases} \frac{x}{\sin\left(\frac{x}{2}\right)} & \text{si } x \in]0, \pi] \\ 2 & \text{si } x = 0 \end{cases}.$$

Montrer que f est de classe \mathcal{C}^1 sur $[0,\pi]$ (on admettra $\frac{\sin(u)-u}{u^3} \xrightarrow[u\to 0]{} -\frac{1}{6}$ et $\frac{\tan(u)-u}{u^3} \xrightarrow[u\to 0]{} \frac{1}{3}$).

4. Soit φ une fonction de classe \mathcal{C}^1 sur $[0,\pi]$. À l'aide d'une intégration par parties, montrer que :

$$\lim_{\lambda \to +\infty} \int_0^{\pi} \varphi(x) \sin(\lambda x) dx = 0.$$

- 5. a) Démontrer que $\lim_{n \to +\infty} L_n = 0$.
- b) En déduire les valeurs de S, U, V et W.