TP 15- Proposition de solutions

Solution 1 1. Cette fonction retourne True si *n* est premier et False sinon.

- 2. Elle recherche un diviseur éventuel parmi tous les entiers compris entre 2 et \sqrt{n} .
- 3. La variable d est incrémentée de 1 à chaque tour de boucle, ainsi elle constitue un variant. Les valeurs prises sont des entiers naturels et majorée(par $\sqrt{n} + 1$) donc en nombre fini : la boucle while termine en temps fini.
- 4. Repérons chaque boucle par la valeur de la variable d. Au début de l'étape repérée par d, un invariant est : " $d \le \sqrt{n}$ et n ne possède aucun facteur entre 2 et d.

Lorsque la boucle se termine, il y a deux cas possibles (la négation d'un "et" par de Morgan donne un "ou") :

- soit $d^2 > n$, alors l'invariant donne que n ne possède aucun facteur (premier) inférieur à \sqrt{n} donc n est premier et la fonction retourne True.
- soit d divise n, alors n est composé et donc la fonction retourne False ;

Solution 2 Taille binaire

1. Voici un script qui retourne la plus petite puissance de deux supérieure à n:

```
def p2(n):
    x=1
    while x<n:
        x=x*2
    return x
```

- 2. Un invariant de boucle est $x = 2^{k-1} < n$. La complexité est $\mathcal{O}(\ln(n))$.
- 3. La taille binaire donnée par la plus petite puissance de deux qui est strictement supérieure à n:

```
def tb(n):
    x,p=1,0
    while x<=n:</pre>
         x,p=x*2,p+1
    return p
```

Solution 3 1. Compléter l'algorithme suivant qui calcule le polynôme de Taylor de la fonction sinus

$$\sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \text{ avec } x \in \mathbb{R} \text{ et } n \in \mathbb{N}$$

$$s \leftarrow x$$
 $m \leftarrow -x**3$
 $f \leftarrow 6$
pour k variant de 1 à n faire
 $s \leftarrow s + \frac{m}{f}$
 $m \leftarrow -x*x*m$
 $f \leftarrow f*(2*k+2)*(2*k+3)$
finpour
afficher s

La récurrence est évidente de par l'écriture même de l'invariant.

2. Un invariant de boucle est, pour $k \in [1, n]$:

$$\left\{ \begin{array}{l} \mathbf{s} = \sum\limits_{j=0}^{k-1} (-1)^j \frac{x^{2j+1}}{(2j+1)!} \\ \mathbf{m} = (-1)^k x^{2k+1} \\ \mathbf{f} = (2k+1)! \end{array} \right.$$

3. • Il y a exactement n itérations. La suite (n-k) est strictement décroissante dans \mathbb{N} . L'algorithme se termine.

La variable s contient au début du tour k=n : $\sum_{j=0}^{n-1} (-1)^j \frac{x^{2j+1}}{(2j+1)!}$

A la fin de ce tour, elle contient : $\sum_{j=0}^{n} (-1)^{j} \frac{x^{2j+1}}{(2j+1)!}$

La correction est vérifiée.

Solution 4 Exponentiation rapide

Prog

1. Suivi des variables lors de l'exécution de algo(-2,13):

1. Editi des tariasies fors de l'execution de digo (2,15).				
r	m	р	p%2 (test lig.4)	
1	-2	13	Ø	
-2	$(-2)^2 = 4$	6	1	
-2	$2^4 = 16$	3	0	
$(-2)^5 = -32$	$2^8 = 256$	1	1	
$(-2)^{13} = -8192$	2^{16}	0	1	

2. On a: $13 = 8 + 4 + 1 = 2^3 + 2^2 + 2^0 = \overline{1101}$

On note que les chiffres de l'écriture binaire de n correspondent aux valeurs de p%2 (du bit de poids le plus faible au bit de poids le plus fort).

3. Notons r_k , m_k , et p_k les valeurs respectives des variables r, m et p au début de la boucle de rang k.

Montrons par récurrence que pour tout $k \in \mathbb{N}$, $r_k m_k^{p_k} = x^n$.

• Initialisation : elle est réalisée à la ligne 1 par : $r_1 = 1$, $m_1 = x$ et $p_1 = n$. Ainsi,

$$r_1 m_1^{p_1} = 1 \times x^n = x^n$$

La relation est vrai au rang 1.

• Hérédité : considérons un rang $k \ge 1$ et supposons que $r_k \, \overline{m_k^{p_k} = x^n}.$ Il y a une alternative concernant la parité de p (ligne 4) ;

procédons par disjonction de cas :

• soit p_k est impair ; il existe $j \in \mathbb{N}$ tel que $p_k = 2j + 1$:

$$\left\{ \begin{array}{rcl} r_{k+1} & = & r_k m_k \\ m_{k+1} & = & m_k^2 \\ p_{k+1} & = & j \end{array} \right.$$

donc
$$r_{k+1} m_{k+1}^{p_{k+1}} = r_k m_k (m_k^2)^j = r_k m_k^{2j+1} = r_k m_k^{p_k}$$

• soit p_k est pair ; il existe $j \in \mathbb{N}$ tel que $p_k = 2j$:

$$\begin{cases} r_{k+1} &= r_k \\ m_{k+1} &= m_k^2 \\ p_{k+1} &= j \end{cases}$$

donc r_{k+1} $m_{k+1}^{p_{k+1}}=r_k \left(m_k^2\right)^j=r_k m_k^{2j}=r_k$ $m_k^{p_k}$ Dans les deux cas, l'hypothèse de récurrence permet d'établir :

$$r_{k+1} m_{k+1}^{p_{k+1}} = r_k m_k^{p_k} = x^n$$

Donc la relation est vérifiée au rang k+1

• Conclusion: $rm^p = x^n$ est un invariant de boucle pour algo 4. La fonction algo se termine avec p de valeur nulle, et retourne r:

$$x^n = r m^p = rm^0 = r$$

Ainsi, l'expression retournée par algo est x^n .

Remarque : Cet algorithme s'appelle l'exponentiation rapide.

- 5. La variable p est un variant de la boucle : la suite de ses valeurs est strictement décroissante d'entiers naturels et donc prend un nombre fini d'états. Ainsi, algo termine en temps fini.
- 6. Évaluation de la complexité de algo :
- Les opérations à chaque tour sont (au maximum) : 2 multiplications, 2 divisions euclidiennes, 1 comparaison et 3 affectations.

Considérant ces opérations usuelles comme référence, la complexité de algo va dépendre du nombre de boucles effectuées.

• La question 2) nous suggère de considérer la longueur de l'écriture binaire de n.

Autrement dit, considérant la variable p, initialisée à n, le nombre de boucle correspond au nombre de fois que l'on peut diviser n par 2:

$$\min\left\{k; 2^k \ge n\right\}$$

On a:

$$2^k \ge n \quad \Leftrightarrow \quad k \ln(2) \ge \ln(n) \quad \Leftrightarrow \quad k \ge \frac{\ln(n)}{\ln(2)}$$

Ainsi, la complexité temporelle de algo est $\mathcal{O}(\ln(n))$.

 $7.\ Version\ r\'ecursive\ de\ algo:$

Version récursive

appel	x	n%2	sortie
(-2,13)	-2	1	$(-2)^{8+4+1} = (-2)^{13}$
(4,6)	$(-2)^2 = 4$	0	$(-2)^{8+4}$
(16,3)	$2^4 = 16$	1	$(-2)^{8+4}$
(256,1)	$(-2)^8 = 256$	1	$(-2)^8$
(X,0)	X	X	1

Rappel: le tableau se remplit en descendant sur les appels (colonnes de gauche), puis en remontant sur la sortie (colonne de droite).

8. L'écriture binaire de 100 est : 100 = (1100100)₂

$$A^{100} = \underbrace{(A^2)^2}_{=B} \times \underbrace{((B^2)^2)^2}_{=C} \times C^2$$

Ce qui donne 8 produits.

Vérification : $A^{2^2} \times A^{2^5} \times A^{2^6} = A^{4+32+64} = A^{100}$.

9. La méthode de Hörner consiste à factoriser depuis l'intérieur pour optimiser le calcul des puissance :

$$P = \sum_{k=0}^{p} b_k X^k = ((\cdots (b_p X + b_{p-1})X + \cdots + b_2)X + b_1)X + b_0$$

Comme $100 = (1100100)_2$, il vient :

$$A^{100} = ((((A^2 \times A)^2)^2)^2 \times A)^2)^2$$

Ce qui donne aussi 8 produits.

Vérification : $A^{((2+1)\times 2\times 2\times 2+1)\times 2\times 2} = A^{((3\times 8+1)\times 4)} = A^{100}$