

Un polynôme est caractérisé par la liste de ses coefficients. Aucun module n'est strictement au programme, voici les deux plus courants :

 \triangleright Le module numpy.polynomial propose un type Polynomial défini à partir de la liste $[a_0, a_1, \ldots, a_n]$

```
>>> import numpy.polynomial as pol
>>> P=pol.Polynomial([1,2,3,4])
>>> P(0)
1.0
```

Les fonctions spécifiques à ce module vous seront données, si besoin, dans l'énoncé ou les annexes du sujet.

ightharpoonup Le module numpy propose un type poly1d défini à partir de la liste $[a_n, a_{n-1}, \dots, a_1, a_0]$

```
>>> import numpy as np
>>> P=np.poly1d([1,2,3,4])
>>> print(P)
3 2
1 x + 2 x + 3 x + 4
>>> P(0)
4
```

Nous allons travailler avec ce type dans ce TP. Les fonctions suivantes, du **module numpy**, existent aussi sous la forme d'attributs :

Notation	Explication
poly1d(L)	Polynôme dont les coefficients sont don-
	nés dans le liste L dans l'ordre des puis-
	sances décroissantes
P[i]	Coefficient de X^i
P(a)	Evaluation de P en a
P.coeffs	Liste des coefficients
len(P)	Dégré, voir P.order
<pre>polyder(P)</pre>	Polynôme dérivé, voir P.deriv()
<pre>polyint(P)</pre>	Primitive de P nulle en 0
	<pre>voir P.integ()</pre>
roots(P)	Racines complexes de P
<pre>poly1d(L,True)</pre>	Polynôme dont les racines sont donnés
	dans le liste L
q,r=A/B	Quotient et reste de la division euclidi-
	enne de A par B
	<pre>voir aussi q,r=polydiv(A,B)</pre>

ARITHMÉTIQUE SUR LES POLYNÔMES

Exercice 1 Division euclidienne

1. Compléter l'algorithme de la division euclidienne des polynômes A par B :

```
Entrée : A,B deux polynômes
```

```
Q \leftarrow \dots
R \leftarrow \dots
Tant que \dots faire
T \leftarrow \dots
Q \leftarrow \dots
R \leftarrow \dots
FinTantque
```

Sortie : Q,R tel que A = QB + R avec deg(R) < deg(B)

2. Donner une fonction DE(A,B) qui effectue la division euclidienne du polynôme A par le polynôme B (sans utiliser l'instruction / ou la fonction polydiv).

Exemple:
$$X^4 + X^2 + X - 1 = (X^2 - 1)(X^2 + 2) + X + 1$$

Exercice 2 Euclide étendu

- 1. Formaliser l'algorithme d'Euclide étendu sur le couple de polynômes (A;B).
- Écrire une fonction bezout(A,B) qui réalise l'algorithme d'Euclide étendu.

ALGORITHME DE STURM

Objectif: Rechercher les racines d'un polynôme sur un intervalle

Considérons un polynôme $P \in \mathbb{R}[X]$ a racines simples. On définit la suite de Sturm, comme la suite des polynômes (P_b) telle que :

$$P_0 = P$$
 $P_1 = P'$

 $\forall k \geq 2, \; P_k = -R$ où R est le reste de la DE de P_{k-2} par $P_{k-1})$

 P_n est le dernier polynôme non nul de la suite.

On introduit $S(\alpha)$, la fonction donnant le nombre de changements de signes (stricts) dans la suite $(P_k(\alpha))_{k \in [0,n]}$.

Le théorème de Sturm dit que si $\alpha < \beta$ tel que $P(\alpha) \neq 0$ et $P(\beta) \neq 0$ alors $S(\alpha) - S(\beta)$ est le nombre de racines réelles de P dans l'intervalle $[\alpha, \beta]$

Exercice 3

- 1. Écrire une fonction S(L) qui dénombre les changements de signes (stricts) des termes de la liste L sachant que le premier élément est non nul.
- 2. Proposer un moyen de construire un polynôme à racines simples ayant les mêmes racines que ${\cal P}.$

Compléter la fonction simple(P) qui retourne un tel polynôme.

```
def simple(P):
    A,B=...
    while len(B)>0:
        Q,R=np.polydiv(A,B)
        A,B=...
    ...
    return(...)
```

- 3. Écrire une fonction sturm(P) qui retourne le suite de Strum du polynôme P (jusqu'au dernier polynôme non nul).
- 4. Écrire une fonction nbzeros (L,a,b) qui renvoie le nombres de racines réelles du polynôme P sur [a,b] où P est supposé à racines simples ne s'annulant ni en a, ni en b et L est sa suite de Sturm associée.
- 5. Écrire une fonction racines (P,a,b,h,L=[]) qui retourne la liste des racines réelles de P, à une précision h, sur l'intervalle [a,b] en utilisant le principe de dichotomie.

INTERPOLATION DE LAGRANGE

Considérant $((x_i, y_i))_{i \in [0, n-1]} \in (\mathbb{R}^2)^n$. On définit pour $i \in [0, n-1]$

$$L_i = \prod_{\substack{j=0\\i\neq j}}^{n-1} \frac{X - x_j}{x_i - x_j}$$

L'unique polynôme $P \in \mathbb{R}_{n-1}[X]$ tel que pour tout $i \in [0, n-1]$, $P(x_i) = y_i$ est

$$P = \sum_{i=0}^{n} y_i L_i$$

Exercice 4

1. Écrire une fonction lagrange(X,Y,t) qui prend deux listes X et Y et retourne l'expression de P(t) où P est le polynôme d'interpolation de Lagrange des couples associés aux deux familles de nombres X et Y.

Remarque: la l'instruction enumerate est recommandée.

2. Écrire une fonction qui affiche la courbe de la fonction f, les points d'interpolations et la courbe du polynôme d'interpolation. Les points x_i sont choisis uniformément répartis entre a et b:

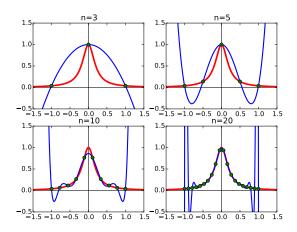
$$\forall i \in [0, n-1], \quad x_i = a + i \frac{b-a}{n-1}$$

Les courbes sont tracés sur la fenêtre $[x_m, x_M] \times [y_m, y_M]$. L'intitulé de la fonction est :

interpolation(f,a,b,n,xm,xM,ym,yM)

3. Tester la fonction précédente avec $g: x \mapsto \frac{1}{1+25x^2}$, sur

$$[-1,1] \text{ et } f: x \mapsto \frac{2t+3}{3}$$



→ Dès que le nombre de points d'interpolation est grand (>60), la fonction obtenue ne correspond plus au polynôme de Lagrange. On observe des oscillations de plus en plus grandes aux extrémités de l'intervalle et elle on tendance à se propager progressivement à l'intérieur : ceci est le connu sous le nom du phénomène de Runge.

Remarque : Nous avons travaillé avec un répartition uniforme de points d'interpolation. Intéressons nous maintenant à une autre répartition !

Exercice 5 Subdivision de Chebychev On rappelle le polynôme de Chebychev de première espèce d'ordre n:

$$\forall x \in \mathbb{R}, \quad T_n(\cos(x) = \cos(nx))$$

- 1. Identifier les racines de T_n qui sont dans [-1,1]. Répartir les racines sur [a,b] à l'aide d'une transformation affine.
- 2. Écrire une fonction effectuant l'interpolation d'un fonction f sur [a,b] en les points définis ci-avant : interpolation_T(f,a,b,n,xm,xM,ym,yM)

3. Comparer les résultats en fonction des deux répartitions.

