Espaces probabilisés finis

1 Expérience aléatoire. Événement

1.1 Expérience aléatoire

Définition – Expérience aléatoire. Univers des résultats possibles

On appelle expérience aléatoire \mathcal{E} une expérience qui reproduite dans des conditions identiques peut conduire à plusieurs résultats possibles et dont on ne peut pas prévoir le résultat à l'avance. L'ensemble des issues (ou des résultats possibles ou des réalisations) est appelé univers des résultats possibles, est noté Ω .

Exemples

- 1. On lance une pièce de monnaie deux fois de suite. On note 0 pour Face et 1 pour Pile. L'univers est $\Omega = \{0,1\} \times \{0,1\} = \{(0,0);(0,1);(1,0);(1,1)\}.$
- 2. On lance un dé, l'univers est $\Omega = \{1, 2, 3, 4, 5, 6\}$; pour 3 lancers, l'univers devient $\{1, 2, 3, 4, 5, 6\}^3$.
- 3. On lance une infinité de fois une pièce. L'univers est infini : $\Omega = \{0,1\}^{\mathbb{N}}$.
- 4. On lance une fléchette sur une cible de 30cm de diamètre, l'univers est infini :

$$\Omega = \{(x, y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} \le 15\}$$

5. On mesure la durée de vie d'une ampoule, l'univers est infini : $\Omega = [0, +\infty[$.

On se limitera dans ce premier cours au cas où Ω est un ensemble fini (discret).

1.2 Événement

Définition – Événement. Événement élémentaire

On appelle événement aléatoire (associé à \mathcal{E}) un sous-ensemble de l'univers Ω dont on peut dire au vu de l'expérience s'il est réalisé ou non. Un événement est donc une partie de Ω .

Pour tout $\omega \in \Omega$, le singleton $\{\omega\}$ est appelé événement élémentaire.

Exemples

1. On lance deux fois de suite une pièce.

L'événement «le premier lancer est Pile» est modélisé par $A = \{(1,0); (1,1)\}.$

L'événement «les deux lancers donnent des résultats différents» est modélisé par $B = \{(0,1); (1,0)\}.$

2. On lance un dé.

L'événement «le résultat est un nombre pair» est modélisé par $C = \{2, 4, 6\}$.

L'événement «le résultat est 4» est modélisé par $D = \{4\}$. C'est un événement élémentaire.

OPÉRATIONS SUR LES ÉVÉNEMENTS — On donne ci-dessous la correspondance entre la description d'un événement aléatoire et sa modélisation ensembliste. Dans tout le tableau, A et B désignent des événements.

Description événement aléatoire	Modélisation ensembliste
Évènement A	sous-ensemble S
Événement contraire à A	\overline{A}
A et B sont réalisés	$A \cap B$
A ou B est réalisé	$A \cup B$
La réalisation de A entraine celle de B	$A \subset B$
A et B sont incompatibles	$A \cap B = \emptyset$
Événement certain (se réalise toujours)	Ω
Événement impossible (ne se réalise jamais)	Ø

Exercice: Illustrer les notations ci-avant dans le cadre du lancer d'un dé.

[1] à compléter

| Solution -

Définition – Système complet d'événements

Soient $n \in \mathbb{N}^*$ et (A_1, \ldots, A_n) une famille d'événements. On dit que cette famille forme un système complet d'événements lorsque :

- (i) ces événements sont 2 à 2 incompatibles : $si_n i \neq j$ alors $A_i \cap A_j = \emptyset$.
- (ii) leur réunion est l'événement certain : $\Omega = \bigcup_{i=1}^{n} A_i$.

Remarque — Un système complet d'évènements (SCdE) peut être associé à une disjonction de l'ensemble des issues. En particulier cela permet de décomposer un évènement en une réunion d'évènements (en utilisant la distributivité).

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^{n} A_i \right) = \bigcup_{i=1}^{n} (B \cap A_i)$$

Ceci sera réutiliser!

 \triangleright Une partition de Ω est un SCd'E dont les évènements ne sont pas vide!

Exemples

1. On lance une pièce deux fois de suite, l'univers est $\Omega = \{0, 1\}^2$.

La famille (A_0, A_1) est un système complet d'événement où :

$$A_0 = \{(0,0); (0,1)\} =$$
 «le premier lancer donne Face»

$$A_1 = \{(1,0); (1,1)\} = \text{ «le premier lancer donne } Pile »$$

En particulier, pour tout évènement A, $\{A, \overline{A}\}$ est un système complet d'évènements.

2. Pour un dé à 6 faces : $\{1,3,6\},\{2,4\}$ et $\{5\}$ forment un système complet d'évènements.

Exercice : Dans une suite de n lancers d'une pièce, on note F_i (resp. P_i) l'évènement "Face (resp. Pile) sort au ième lancer".

- 1. Montrer que $(F_1, P_1 \cap F_2, P_1 \cap P_2)$ est un système complet d'évènements.
- 2. Que modélise ce système complet d'évènements?

[2] à compléter

| Solution -

Remarque – La notion de première occurrence permet de définir une famille d'évènements deux à deux incompatibles : première apparition d'un Pile, première apparition d'un nombre pair, ...

2 Probabilité

2.1 Définition

Définition – Probabilité

Soit Ω est un univers fini. On appelle probabilité sur Ω toute application \mathbf{P} de $\mathcal{P}(\Omega)$ dans [0,1] vérifiant : 1. $\mathbf{P}(\Omega) = 1$,

2. si A et B sont deux événements incompatibles alors $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$.

Le triplet $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ est appelé espace probabilisé fini, tandis que $(\Omega, \mathcal{P}(\Omega))$ est appelé espace probabilisable.

2.2 Propriétés

Proposition – Soit $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé fini.

- (i) $\mathbf{P}(\emptyset) = 0$,
- (ii) pour tout $A \in \mathcal{P}(\Omega)$, $\mathbf{P}(\bar{A}) = 1 \mathbf{P}(A)$
- (iii) pour tout $A, B \in \mathcal{P}(\Omega)$, si $A \subset B$ alors $\mathbf{P}(A) \leq \mathbf{P}(B)$

(iv) si A_1, A_2, \ldots, A_n sont des événements deux à deux incompatibles alors :

$$\mathbf{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbf{P}(A_i),$$

(v) si A_1, A_2, \ldots, A_n sont des événements alors :

$$\mathbf{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbf{P}(A_i).$$

[3] à compléter

Démonstration -

Montrer (ii), (i) puis (iii)

Exercice: Soit $A, B, C \in \mathcal{P}(\Omega)$:

- 1. Montrer que $P(B \setminus A) = P(B) P(A \cap B)$. Comment cette formule se réécrit-elle lorsque $A \subset B$?
- 2. Montrer que $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$.
- 3. Déterminer $\mathbf{P}(A \cup B \cup C)$.

[4] à compléter

| Solution –

Théorème – Soit $(\Omega, \mathcal{P}(\Omega))$ un espace probabilisable fini. On note $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ où $n = \text{Card}(\Omega)$. Pour toute famille de réels (p_1, p_2, \dots, p_n) vérifiant :

- (i) pour tout $i \in [1, n], p_i \ge 0$,
- (ii) $p_1 + p_2 + \dots + p_n = 1$

il existe une et une seule probabilité \mathbf{P} sur $(\Omega, \mathcal{P}(\Omega))$ telle que, $\forall i \in [1, n], \mathbf{P}(\omega_i) = p_i$.

Remarque – Autrement dit, lorsque Ω est fini, une probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement déterminée par la donnée des probabilités des événements élémentaires.

|5| à compléter

Démonstration -

Chercher les différentes étapes du raisonnement. Établir l'un ou l'autre des étapes.

Exemple

On lance un dé $\Omega = \{1, 2, 3, 4, 5, 6\}$ on pose $P(\{i\}) = p_i$.

Déterminons p_i pour que la probabilité de chaque face soit proportionnelle au carré de son numéro.

Ainsi, il existe $\lambda \in \mathbb{R}_+$ tel que pour tout $i \in \Omega$: $p_i = \lambda i^2$ et $\sum_{k=1}^{6} p_i = 1$

Il vient $\lambda \sum_{k=1}^{6} i^2 = 1 \quad \Rightarrow \quad \lambda = \frac{6}{6.7.13} = \frac{1}{91}$. Ainsi, $\forall i \in \Omega$, $p_i = \frac{i^2}{91}$

2.3 Probabilité uniforme

Définition – Équiprobabilité

Soit $(\Omega, \mathcal{P}(\Omega), \overline{\mathbf{P}})$ un espace probabilisé fini. On dit que la probabilité est uniforme si tous les événements élémentaires ont même probabilité.

Théorème – Soit $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé **fini** de probabilité uniforme. Alors, pour tout événement $A \in \mathcal{P}(\Omega)$, on a :

$$\mathbf{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)} \qquad \left(\text{vulgaris\'e par } \mathbf{P}(A) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}} \right)$$

Remarques -

- 1. En particulier, si $\omega \in \Omega$ alors $\mathbf{P}(\{\omega\}) = \frac{1}{\operatorname{Card}(\Omega)}$.
- 2. Lorsque la probabilité est uniforme (on dit aussi qu'il y a équiprobabilité), on est ramené à dénombrer des ensembles.

Exercices:

- 1. On lance 4 dés non pipés. Calculer la probabilité d'obtenir un 6.
- 2. Une personne possède un trousseau de n clés pour ouvrir une porte. Elle les essaie au hasard, une à une. Déterminer la probabilité que la k-ième ouvre?
- 3. On lance au hasard r balles dans 3 cases. Quelle est la probabilité pour qu'aucune case ne soit vide?

| Solution -

3 Probabilité conditionnelle

3.1 Définition

Définition – Probabilité de B sachant A

Soient $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé fini et $A \in \mathcal{P}(\Omega)$ un événement tel que $\mathbf{P}(A) > 0$. Si $B \in \mathcal{P}(\Omega)$, on appelle probabilité de B sachant A ou probabilité de B sachant que A est réalisé le réel noté $\mathbf{P}(B|A)$ ou $\mathbf{P}_A(B)$ et défini par :

$$\mathbf{P}(B|A) = \mathbf{P}_A(B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}$$

Remarque – Ne pas confondre $P(B \setminus A) = P(B - A)$ et P(B|A).

Théorème – Soient $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé fini et $A \in \mathcal{P}(\Omega)$ un événement tel que $\mathbf{P}(A) > 0$. Alors $\mathbf{P}_A : \mathcal{P}(\Omega) \longrightarrow [0,1]$ est une probabilité sur $(\Omega, \mathcal{P}(\Omega))$. $B \longmapsto \mathbf{P}_A(B)$

Démonstration -

On vérifie rapidement les trois caractéristiques.

Exemple

On lance un dé à 6 faces. Quelle est la probabilité p pour obtenir un numéro pair sachant que le résultat est supérieur strict à 3?

On note A: résultat supérieur strict à 3 et B: résultat pair :

$$p = P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{P(\{4, 6\})}{P(\{4, 5, 6\})} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$$

Exercice: Paradoxe des deux enfants - Un ami a deux enfants.

- 1. Quelle est la probabilité p_1 pour que ce soient 2 garçons?
- 2. On souhaite parier sur le fait qu'il ait au moins un garçon. Quelle hypothèse est plus intéressante :
 - -H1: L'ainée est une fille
 - -H2: Il a une fille
- [7] à compléter _

| Solution -

3.2 Formule des probabilités composées

Exemple de situations : une expérience se déroulent en une succession d'épreuves dépendantes les une des autres.

$$A_1 \xrightarrow{A_2 \dots} A_3 \xrightarrow{A_4} B_4$$

$$B_1 \xrightarrow{A_2 \dots} A_2 \dots$$

$$B_1 \xrightarrow{A_2 \dots} D_2 \dots$$

On s'intéresse à la probabilité d'une chemin de l'arbre de probabilité associé. Deux cas classiques :

- les tirages sans remise : on ne peut considérer l'état de second tirage qu'après la réalisation du premier car l'urne est modifiée entre temps.
- les lancers successifs d'une pièce jusqu'à obtenir Pile (et l'on arrête) : l'existence des lancers ultérieurs dépend du faite que Pile ne soit pas sorti avant. Dans ce cas, la dépendance porte sur l'existence mais n'affecte pas la valeur des probabilité

Théorème – Formule des probabilités composées (conditionnement successif)

Soient $(\Omega, \mathcal{P}(\overline{\Omega}), \mathbf{P})$ un espace probabilisé fini et (A_1, A_2, \dots, A_n) une famille d'événements tels que $\mathbf{P}(A_1 \cap \dots \cap A_{n-1}) \neq 0$, alors

$$\mathbf{P}\left(\bigcap_{i=1}^{n} A_i\right) = \mathbf{P}(A_1)\mathbf{P}_{A_1}(A_2)\mathbf{P}_{A_1\cap A_2}(A_3)\dots\mathbf{P}_{A_1\cap \dots \cap A_{n-1}}(A_n).$$

Autrement dit : dans une arbre de probabilité, pour calculer la probabilité d'un noeud ou d'une feuillle, on calcule le produit des probabilités conditionnelles des branches qui mène à ce noeud

[8] à compléter

Démonstration -

Procéder par récurrence sur n.

Exercice: Une urne opaque contient 10 boules dont 6 rouges et 4 vertes. On tire successivement quatre boules sans remise. Quelle est la probabilité d'obtenir une boule rouge, puis deux vertes, puis une rouge?

[9] à compléter

| Solution -

Attention! Par convention, si $\mathbf{P}(A) = 0$ alors on accepte la notation $\mathbf{P}_A(B)\mathbf{P}(A) = 0$.

3.3 Formule des probabilités totales

Exemple de situation : une expérience se déroulent en deux épreuves successives, la deuxième dépendant de la première. On s'intéresse à la probabilité d'un évènement lié à la seconde épreuve à l'aide d'un SCd'E lié aux résultats de la première.

Théorème – Formule des probabilités totales

Soient $(\Omega, \mathcal{P}(\overline{\Omega}), \mathbf{P})$ un espace de probabilisé fini et (A_1, \ldots, A_n) un système complet d'événements. La probabilité totale d'un évènement $B \in \mathcal{P}(\Omega)$ se décompose :

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(A_i \cap B) = \sum_{i=1}^{n} \mathbf{P}(A_i) \mathbf{P}_{A_i}(B)$$

[10] à compléter

Démonstration -

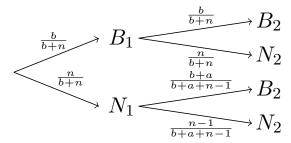
Remarque – Un cas classique : soit A un événement tel que $0 < \mathbf{P}(A) < 1$, alors (A, \overline{A}) est un SCd'E : pour tout $B \in \mathcal{P}(\Omega)$ on a :

$$P(B) = P(A)P_{A}(B) + P(\bar{A})P_{\bar{A}}(B).$$

Exemple

Urne à la Polya

On dispose d'une urne contenant b boules blanches et n boules noires (b, n > 0). On tire une boule : si elle est blanche, on la remet ; si elle est noire, on la remplace par a boules blanches. Calculer la probabilité pour que la deuxième boule tirée soit blanche.



 (N_1, B_1) forme un système complet d'évènements, d'où par la formule des probabilités totales

$$P(B_2) = P(B_1)P_{B_1}(B_2) + P(N_1)P_{N_1}(B_2) = \left(\frac{b}{n+b}\right)^2 + \frac{n(a+b)}{(n+b)(n+b+a-1)}$$

Exercice: On lance un dé non truqué. Si le dé donne 1, on tire une carte dans un jeu de 32 cartes; si le dé donne 2 ou 3, on tire une carte dans un jeu de 52 cartes; enfin si le dé donne 4, 5 ou 6 on choisit au hasard un des quatres rois.

Quelle est la probabilité d'obtenir le roi de trèfle?

Exercice: Problème de Monty Hall - Las Vegas 21

Un animateur d'un jeu propose à un joueur de choisir une boite parmi trois. L'une contient un chèque les autres sont vides.

Prenant note du choix du joueur, l'animateur ouvre une des deux autres boites : elle est vide!

Pour finir, l'animateur propose au joueur de modifier son choix pour l'autre boite non encore ouverte. Est-il plus avantageux pour le joueur de conserver le choix initial ou de changer pour l'autre boite?

Cette approche met l'accent sur le comportement du joueur afin de déterminer s'il a intérêt à changer de porte ou non.

On note, G l'évènement "le joueur gagne" et B l'évènement "le joueur choisi initialement la bonne porte".

1. Montrer que

$$\mathbf{P}(G) = \frac{1}{3}\mathbf{P}_B(G) + \frac{2}{3}\mathbf{P}_{\overline{B}}(G)$$

On précisera le théorème utilisé, ses hypothèses et on justifiera les valeurs numériques introduites.

- 2. Déterminer P(G) pour la variante (1) : "le joueur conserve son choix".
- 3. Déterminer P(G) pour la variante (2) : "le joueur modifie son choix".
- 4. Conclure.

[11] à compléter

| Solution -

3.4 Formule de Bayes

Exemple de situation : une expérience se déroulent en deux épreuves successives, la deuxième dépendant de la première. On s'intéresse à la probabilité d'un évènement lié à la première épreuve sachant la réalisation d'une évènement lié à la seconde.

On cherche à renverser un conditionnement!

Théorème – Formule de Bayes

Soient $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé et deux évènements $A, B \in \mathcal{P}(\Omega)$ tels que $\mathbf{P}(A) > 0$ et $\mathbf{P}(B) > 0$. La probabilité de A sachant B se déduit de celle de B sachant A:

$$\mathbf{P}_B(A) = \frac{\mathbf{P}_A(B)\mathbf{P}(A)}{\mathbf{P}(B)}$$

Si (A_1, \ldots, A_n) un système complet d'événements. Pour tout $B \in \mathcal{P}(\Omega)$ de probabilité non nulle et tout $k \in [1, n]$, on a :

$$\mathbf{P}_{B}(A_{k}) = \frac{\mathbf{P}_{A_{k}}(B)\mathbf{P}(A_{k})}{\mathbf{P}(B)} = \frac{\mathbf{P}_{A_{k}}(B)\mathbf{P}(A_{k})}{\sum_{i=1}^{n} \mathbf{P}_{A_{i}}(B)\mathbf{P}(A_{i})}$$

Démonstration -

La formule de Bayes découle de la définition de la probabilité conditionnelle :

$$\mathbf{P}_B(A) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}_A(B)\mathbf{P}(A)}{\mathbf{P}(B)}$$

La seconde expression consiste à remplacer l'expression de $\mathbf{P}(B)$ par la formule des probabilités totales sur le SCd'E $(A_i)_{i\in \llbracket 1,n\rrbracket}$:

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}_{A_i}(B) \mathbf{P}(A_i)$$

Remarques -

- 1. En pratique, on appliquera premièrement la formule des probabilités totales pour calculer $\mathbf{P}(B)$, puis la forme simple de la formule de Bayes.
- 2. Veillez à identifier et formaliser une situation de renversement par une formule de Bayes et ne pas se contenter d'une probabilité conditionnelle.

Exercice: Une maladie affecte un français sur mille. On dispose d'un test sanguin qui détecte cette maladie avec une fiabilité de 99% lorsqu'elle est effectivement présente. Cependant, on obtient un résultat faussement positif pour 0,2% des personnes saines testées.

Quelle est la probabilité qu'une personne soit réellement malade lorsqu'elle a un test positif?

[12] à compléter

| Solution -

Exercice : Les voitures d'un magasin proviennent de deux usines : 60 % de A et 40 % de B. Parmi celles qui viennent de A, 30 % présentent un défaut ; 10 % pour celles qui viennent de B.

Quelle est la probabilité pour qu'une voiture ayant un défaut vienne de B?

[13] à compléter

| Solution -

4 Événements indépendants

4.1 Indépendance de deux événements

Définition – Indépendance de deux événements

Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$. A et B sont dits indépendants pour la probabilité \mathbf{P} lorsque :

$$\mathbf{P}(A \cap B) = \mathbf{P}(A).\mathbf{P}(B)$$

Remarque – Ne pas confondre événements indépendants et événements incompatibles!

Exercice : On considère une famille et les événements suivants : $A = \emptyset$ la famille a au moins un gars et une fille » et $B = \emptyset$ la famille a au plus une fille ». Les événements A et B sont-ils indépendants si la famille a deux enfants? Même question avec trois enfants.

[14] à compléter

| Solution -

Proposition -

(i) Si $\mathbf{P}(A) > 0$ et $\mathbf{P}(B) > 0$, alors on a les équivalences suivantes :

$$A \ et \ B \ sont \ indépendants \Leftrightarrow \mathbf{P}_B(A) = \mathbf{P}(A) \Leftrightarrow \mathbf{P}_A(B) = \mathbf{P}(B).$$

(ii) Si A et B sont indépendants alors \bar{A} et B, A et \bar{B} , \bar{A} et \bar{B} sont indépendants.

[15] à compléter

| Démonstration –

4.2 Généralisation à n événements

Définition – Indépendance de *n* événements

Soient A_1, \ldots, A_n n événements d'un espace de probabilité $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$. Les événements A_i sont dits mutuellement indépendants ou indépendants dans leur ensemble si pour tout $k \in \{1, 2, \ldots, n\}$ et pour tout ensemble d'entiers distincts $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$, on a :

$$\mathbf{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = \mathbf{P}(A_{i_1})\mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k}).$$

$$ou \ \forall I \subset [1, n], \ \mathbf{P}\left(\bigcap_{i \in I} A_i \right) = \prod_{i \in I} P(A_i)$$

Proposition – Soient A_1, \ldots, A_n n événements mutuellement indépendants d'un espace de probabilité $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$. Pour tout $i \in [1, n]$, soit $B_i \in \{A_i, \overline{A_i}\}$.

Alors la famille $(B_i)_{i \in [\![1,n]\!]}$ est mutuellement indépendante.

Remarque – Des événements indépendants dans leur ensemble sont deux à deux indépendants mais la réciproque est fausse.

Exercice: On jette deux fois de suite un dé non pipé, on considère les événements suivants:

- le premier lancer donne un chiffre pair,
- le second lancer donne un chiffre pair,
- la somme des deux résultats est un nombre impair.

Montrer que ces événements sont indépendants deux à deux mais pas dans leur ensemble.

[16] à compléter

| Solution -

Remarque – En pratique, l'indépendance (mutuelle) découle du modèle de l'expérience et n'est pas déduite par la vérification des relations de la définition.