Fonctions réelles de 2 variables

1 Continuité

1.1 Topologie euclidienne de \mathbb{R}^2

Définition – Norme euclidienne

On appelle norme euclidienne de \mathbb{R}^2 la norme associée au produit scalaire canonique :

$$\forall (x,y) \in \mathbb{R}^2, \quad \|(x,y)\| = \sqrt{x^2 + y^2}$$

Définition – Boule ouverte

Soit $A \in \mathbb{R}^2$. On appelle boule ouverte de centre A et de rayon r > 0 l'ensemble

$$B(A,r) = \{ M \in \mathbb{R}^2; \ \|M - A\| < r \}$$

Remarque – B(A, r) est en fait le disque de centre A et de rayon r, cercle non compris.

On peut aussi introduire la notion de boules fermée en remplaçant l'inégalité stricte par une large.

Exercice: Dans \mathbb{R}^2 , une autre norme est : $\| \|_1 : (x,y) \mapsto |x| + |y|$. Représenter la boule unité B(O,1).

[1] à compléter _____ | Solution -

Définition – Ensemble ouvert

Soit $\Omega \subset \mathbb{R}^2$. On dit que Ω est une partie ouverte de \mathbb{R}^2 si $\Omega = \emptyset$ ou si pour tout $A \in \Omega$, il existe r > 0, tel que $B(A, r) \subset \Omega$.

Exemple

 \mathbb{R}^2 est une partie ouverte, \emptyset aussi.

Exercices:

- 1. Toute boule ouverte est une partie ouverte.
- 2. Si I et J sont des intervalles ouverts de \mathbb{R}^2 alors $I \times J$ est une partie ouverte de \mathbb{R}^2 .

 $[2] \ {\tt {\tt a}} \ {\tt {\tt completer}}$

| Solution -

Proposition – Une intersection finie d'ouverts est un ensemble ouvert.

Une réunion quelconque d'ouverts est un ensemble ouvert.

[3] à compléter

| Démonstration -

Définition – Ensemble fermé

Soit $\Omega \subset \mathbb{R}^2$. On dit que Ω est une partie fermée de \mathbb{R}^2 lorsque son complémentaire $\overline{\Omega}$ est une partie ouverte de \mathbb{R}^2 .

Attention! Une intersection infinie d'ouverts peut ne pas être un ouvert. Contre-exemple: $\bigcap_{i \in \mathbb{N}^*} B\left(A, \frac{1}{n}\right) = \{A\}.$

Remarque – Une partie de \mathbb{R}^2 peut-être ni ouverte, ni fermée. Par exemple, $[0,1] \times [0,1]$.

Exemples

- 1. \mathbb{R}^2 est une partie fermée (c'est donc une partie à la fois ouverte et fermée).
- 2. Toute boule fermée est une partie fermée.
- 3. Si I et J sont des intervalles fermés de \mathbb{R}^2 alors $I \times J$ est une partie fermée de \mathbb{R}^2 .

Corollaire – Une réunion finie de fermés et une intersection quelconque de fermés sont des fermés.

Démonstration -

Cela découle de la règle de Morgan.

Remarque – Un ensemble fermé est un ensemble qui contient intégralement son bord. Un ensemble ouvert est un ensemble qui ne contient aucun point de son bord.

Fonctions réelles définies sur \mathbb{R}^2 . Continuité

1.2.1Graphe d'une fonction réelle à deux variables

Définition – Fonction réelle de deux variables

On appelle fonction réelle de deux variables toute fonction $f:D\to\mathbb{R}$ où $D\subset\mathbb{R}^2$, c'est-à-dire toute fonction définie sur une partie de \mathbb{R}^2 et à valeurs dans \mathbb{R} .

Exemples

1.
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto 2x + \cos(x+y) \end{cases}$$

2. $f: \begin{cases} \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R} \\ (x,y) \mapsto \ln(xy) + \frac{1}{x+y} \end{cases}$

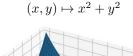
Définition – Graphe

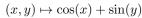
Soit $f: D \to \mathbb{R}$ où $D \subset \mathbb{R}^2$. On appelle graphe de f l'ensemble $\{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D \text{ et } z = f(x,y)\}$.

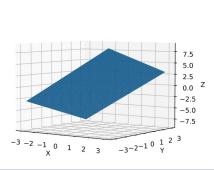
Exemple

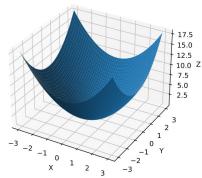
Le graphe d'une fonction affine, c'est-à-dire d'une fonction de la forme $f:(x,y)\mapsto ax+by+c$ où $(a,b,c)\in\mathbb{R}^3$, est un plan.

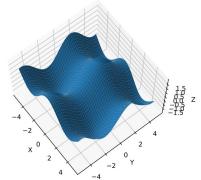
$$(x,y) \mapsto 2x - y$$











Définition – Courbes de niveau

Soit f définie sur $D \subset \mathbb{R}^2$ à valeurs dans \mathbb{R} .

Pour tout réel λ , on appelle courbe de niveau λ l'ensemble $\{(x,y) \in D \mid f(x,y) = \lambda\}$.

- 1. Les lignes de niveau d'une fonction affine sont des droites.
- 2. Les lignes de niveau de $f(x,y) = x^2 + y^2$ sont des cercles.

1.2.2Continuité

Dans toute la suite du cours, U désignera une partie ouverte de \mathbb{R}^2 .

Définition – Fonction continue en un point de U

Soient $f:U\to\mathbb{R}$ et $M_0\in U$. On dit que f est continue en M_0 lorsque pour tout $\varepsilon>0$, il existe $\alpha>0$ tel que si $M \in B(M_0, \alpha) \cap U$, alors $|f(M) - f(M_0)| < \varepsilon$.

Remarque – La formulation $\lim_{M\to M_0} f(M) = f(M_0)$ traduit que la limite ne dépend pas du chemin suivi quand M tend M_0 . Ainsi, un moyen de montrer qu'une application n'est pas continue en un point est de trouver deux chemins qui y mènent et qui donnent des limites différentes ou alors de trouver un chemin dont la limite est infinie ou tout simplement différente de l'image du point.

Exemple de chemin : en ligne droite, en spirale, etc.

$$f:(x,y)\mapsto \left\{\begin{array}{ll} \frac{x+y^4}{x^2+y^2} & \text{si }(x,y)\neq (0,0)\\ 0 & \text{sinon} \end{array}\right. \text{ n'est pas continue en }(0,0) \text{ car } f(t,0) \sim \frac{1}{t}.$$

Définition – Fonction continue sur U

On dit que f est continue sur U si elle est continue en tout point de U.

Proposition – On suppose qu'il existe une fonction $g: \mathbb{R}_+ \to \mathbb{R}$ continue en 0 et telle que g(0) = 0 et qu'il existe r > 0 tel que pour tout $M \in B(M_0, r) \cap U$ on ait : $|f(M) - f(M_0)| \le g(d(M, M_0))$ alors f est continue en M_0 .

Méthode: Majorer $|f(x,y)-f(x_0,y_0)|$ par un expression en $d(M,M_0)^2=(x-x_0)^2+(y-y_0)^2$.

$$M \to M_0 \quad \Leftrightarrow \quad d(M, M_0) \to 0 \quad \Leftrightarrow \quad (x - x_0)^2 + (y - y_0)^2 \to 0$$

En particulier, en 0, on a : $|x| \le \sqrt{x^2 + y^2}$ et $|y| \le \sqrt{x^2 + y^2}$.

Exemples

- 1. Les fonctions constantes sont continues sur \mathbb{R}^2 .
- 2. Les projections $p_1:(x,y)\mapsto x$ et $p_2:(x,y)\mapsto y$ sont continues sur \mathbb{R}^2 .
- 3. $M \mapsto d(A, M)$ est continue car $|d(A, M) d(A, P)| \leq d(M, P)$.
- 4. La fonction définie par $f(x,y) = \frac{x^2 + xy}{\sqrt{x^2 + y^2}}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0 est continue en (0,0).

$$|f(x,y) - f(0,0)| = \left| \frac{x^2 + xy}{\sqrt{x^2 + y^2}} \right| \le \frac{\sqrt{x^2 + y^2}^2 + \sqrt{x^2 + y^2}^2}{\sqrt{x^2 + y^2}} = 2\sqrt{x^2 + y^2} \underset{\sqrt{x^2 + y^2} \to 0}{\longrightarrow} 0$$

Méthode par passage en polaire : $x = \rho \cos(\theta)$ et $y = \rho \sin(\theta)$ alors $d(M, O) = \rho$

$$f(x,y) - f(0,0) = \frac{\rho^2 \cos^2(\theta) + \rho^2 \sin(\theta) \cos(\theta)}{\rho} = \rho(\cos^2(\theta) + \cos(\theta) \sin(\theta)) \xrightarrow[\rho \to 0]{} 0$$

- 5. La fonction définie par $f(x,y) = \frac{2xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = a n'est pas continue en (0,0) quel que soit a.
 - $ightharpoonup \lim_{t\to 0} f(t,t) = 1$ et $\lim_{t\to 0} f(t,0) = 0$ donc f non continue ne (0,0)
 - $f(x,y) = \frac{2\rho^2 \cos(\theta) \sin(\theta)}{\rho^2} = 2\cos(\theta) \sin(\theta) \dots \text{ la valeur dépend de l'angle d'approche!}$

Exercice: Les applications suivante sont-elles prolongeables par continuité en (0,0):

$$g(x,y) = \frac{x^2y}{x^2 + y^2}$$
 $h(x,y) = \frac{(x+y)^2}{x^2 + 3y^2}$

[4] à compléter

Solution -

Exercice : Soit $f: \mathbb{R}^2 \to \mathbb{R}$. Si f est continue sur \mathbb{R}^2 si et seulement si l'image réciproque par f de tout intervalle ouvert (resp. fermé) est un ouvert (resp. fermé) de \mathbb{R}^2 .

[5] à compléter

| Solution -

Exemples

- 1. Le demi-plan ax + by + c > 0 est un ouvert de \mathbb{R}^2 .
- 2. Cet exercice permet de redémontrer que les boules ouvertes sont des ouverts et les boules fermées des fermés, en effet, considérant $f: M \mapsto d(M, M_0)$ continue alors $B(M_0, r) = f^{-1}(] r, r[)$ est un ouvert.

Remarque – Conformément au programme, les résultats généraux ne sont pas introduits. Nous pouvons toutefois citer leur existence :

- ullet lorsqu'elles sont bien définies, la somme, le produit, le quotient d'applications définies et continues sur U, sont continues sur U;
- la composition à gauche par une application continue de $\mathbb{R}^{\mathbb{R}}$ est continue sur U:
- le théorème des bornes : Si f est continue sur C, une partie fermée bornée de \mathbb{R}^2 , alors f est bornée sur C et elle y atteint ses bornes, autrement dit il existe $M_1, M_2 \in C$ tels que :

$$\forall M \in C, \ f(M_1) \le f(M) \le f(M_2).$$

$\mathbf{2}$ Dérivabilité partielle

Pour une fonction réelle d'une variable réelle, la notion de dérivabilité est liée à l'existence d'une tangente non verticale. La tangente étant obtenue par la limite de cordes, ainsi sa pente est la limite de pentes de cordes : limite de taux d'accroissement.

Il est possible d'introduire cette notion sur toute courbe obtenue en prenant l'intersection entre la surface et un plan du type $A + t\overrightarrow{v} + u\overrightarrow{k}$ dans le repère $(O, (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}))$ avec $\overrightarrow{v} \in \text{Vect}(\overrightarrow{i}, \overrightarrow{j})$.

Définition – **Dérivée** directionnelle

Soient $f \in \mathbb{R}^U$, $M \in U$ et $\overrightarrow{v} \in \mathbb{R}^2$. On dit que f est dérivable en M dans la direction \overrightarrow{v} si $t \mapsto f(M + t\overrightarrow{v})$ est dérivable en 0. En particulier, on note $D_{\overrightarrow{v}}f(M) = \lim_{t \to 0} \frac{f(M + t\overrightarrow{v}) - f(M)}{t} \in \mathbb{R}$ (limite finie).

Cette approche nous invite à déterminer deux dérivées directionnelles particulières, appelées $d\acute{e}riv\acute{e}es$ partielles : celle où $\overrightarrow{v} = \overrightarrow{i}$ et celle où $\overrightarrow{v} = \overrightarrow{j}$.

2.1 Dérivées partielles

Définition – Dérivées partielles

Soient $f \in \mathbb{R}^U$ et $M \in U$.

- (i) S'il existe, le réel $D_{\overrightarrow{r}}f(M)$ est appelé **première dérivée partielle** en M, noté $\frac{\partial f}{\partial x}(M)$.
- (ii) S'il existe, le réel $D_{\overrightarrow{j}}f(M)$ est appelé seconde dérivée partielle en M, noté $\frac{\partial f}{\partial u}(M)$.

Remarques -

- 1. L'existence de la première dérivée partielle repose sur le fait que la fonction $t \mapsto f(x+t,y)$ soit dérivable en 0 où M est de coordonnées (x, y).
- 2. La notation $\frac{\partial f}{\partial x}(M)$ ou encore $\frac{\partial f}{\partial y}(x,y)$ contient un ambiguïté. Les deux lettres x ne réfère pas au même objet :
 - celui en ∂x indique que l'on dérive dans la direction \overrightarrow{i} , c'est une "convention" d'écriture et on pourrait plus simplement noter $\partial_1 f(M)$ ou $\partial_1 f(x,y)$;
 - celui en (x,y) précise les coordonnées du point M que l'on pourrait écrire avec d'autre lettre : $\frac{\partial f}{\partial u}(u,v)$.
- 3. Dans la pratique, pour calculer une dérivée partielle, on fixe une des deux variables qui joue alors le rôle de paramètre, et on dérivé par rapport à l'autre variable.

Exemples

- 1. Si f(x,y) = ax + by + c alors f admet des dérivées partielles en tout point $M \in \mathbb{R}^2$: $\frac{\partial f}{\partial x}(x,y) = a$ et $\frac{\partial f}{\partial y}(x,y) = b$.
- 2. Soit $f(x,y) = \sqrt{x^2 + 3y^2}$. En tout point $M \in \mathbb{R}^2 \setminus \{(0,0)\}$, f admet des dérivées partielles :

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + 3y^2}} \text{ et } \frac{\partial f}{\partial y}(x,y) = \frac{3y}{\sqrt{x^2 + 3y^2}}$$

Exercice: Soit f définie par f(0,0) = 0 et pour $(x,y) \neq (0,0)$, $f(x,y) = \frac{2xy}{x^2 + y^2}$

- 1. Montrer que f admet des dérivées partielles en (0,0)
- 2. f est-elle continue en (0,0)
- 3. Que conclure?
- [6] à compléter

| Solution -

Exercice: Donner les dérivées partielles de g en tout point avec g(0,0)=0 et pour $(x,y)\neq (0,0), g(x,y)=\frac{x^3-y^3}{2x^2+y^2}$

| Solution -

Exercice: Soient $f, g \in \mathbb{R}^U$ admettant une première dérivée partielle en $M \in U$ et soit $\lambda \in \mathbb{R}$.

1. Montrer $f+g,\,\lambda f$ et fg admettent une première dérivée partielle en M et

$$\frac{\partial (\lambda f + g)}{\partial x}(M) = \lambda \frac{\partial f}{\partial x}(M) + \frac{\partial g}{\partial x}(M) \text{ et } \frac{\partial f g}{\partial x}(M) = f(M) \frac{\partial g}{\partial x}(M) + g(M) \frac{\partial f}{\partial x}(M_0)$$

2. Si de plus $g(M) \neq 0$, montrer que $\frac{f}{a}$ et $\frac{1}{a}$ admettent une première dérivée partielle en M et

$$\frac{\partial}{\partial x} \left(\frac{f}{g} \right)(M) = \frac{1}{g(M)^2} \left(g(M) \frac{\partial f}{\partial x}(M) - f(M) \frac{\partial g}{\partial x}(M) \right) \text{ et } \frac{\partial}{\partial x} \left(\frac{1}{g} \right)(M) = \frac{-1}{g(M)^2} \frac{\partial g}{\partial x}(M)$$

3. Soit $\varphi \in \mathcal{D}(I,\mathbb{R})$ avec I un intervalle et $f(U) \subset I$. Montrer que $\varphi \circ f$ admet une première dérivée partielle en M et

$$\frac{\partial \varphi \circ f}{\partial x} = \frac{\partial f}{\partial x} \times \varphi' \circ f$$

[8] à compléter

| Solution -

Définition – Fonction de classe C^1 Soit $f \in \mathbb{R}^U$ (avec U ouvert). On dit que f est de classe C^1 sur U si f admet des dérivées partielles en tout point de U et si les fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues sur U.

Proposition -

Soient f et g deux fonctions de classe C^1 sur U et $\lambda \in \mathbb{R}$. Alors f+g, λf et fg sont de classe C^1 sur U. Si de plus g ne s'annule pas sur U alors $\frac{1}{a}$ et $\frac{f}{a}$ sont de classe \mathcal{C}^1 sur U.

Exemple

Les fonctions polynomiales sont de classe \mathcal{C}^1 sur \mathbb{R}^2 et les quotient de fonctions polynomiales sont de classe \mathcal{C}^1 sur leur ensemble de définition.

Exercice: Montrer que $(x,y) \mapsto ||(x,y)||$ est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

[9] à compléter

| Solution -

2.2 Gradient et développement limité à l'ordre 1

Définition – Gradient

Soient $f \in \mathbb{R}^U$ et $M \in U$. Si f admet des dérivées partielles en M, on appelle gradient de f en M et on note $\nabla f(M)$ (lu "nabla de f en M") le vecteur de \mathbb{R}^2 suivant :

$$\nabla f(M) = \left(\frac{\partial f}{\partial x}(M), \frac{\partial f}{\partial y}(M)\right).$$

Définition – Développement limité à l'ordre 1

Soient $f \in \mathbb{R}^U$ et $M \in U$. On dit que f admet un développement limité à l'ordre 1 en M lorsqu'il existe $(a,b) \in \mathbb{R}^2$ et une fonction ε continue en (0,0) et s'annulant en (0,0) tels que, pour tout $(h,k) \in \mathbb{R}^2$ vérifiant $(x+h,y+k) \in U$, on

$$f(x + h, y + k) = f(x, y) + ah + bk + ||(h, k)||\varepsilon(h, k).$$

On note aussi $f(x+h, y+k) = f(x,y) + ah + bk + o(\|(h,k)\|)$.

Remarques -

- 1. En notant H = (h, k) et G = (a, b), on a : $f(M + H) = f(M) + \langle G, H \rangle + o(\|H\|)$.
- 2. Le $DL_1(M_0)$ pour $M_0 \in U$ s'écrit aussi $f(x,y) = f(x_0,y_0) + a(x-x_0) + b(y-y_0) + o(\|(x-x_0,y-y_0)\|)$.

Proposition – (avec les notation de la définition)

Si f admet un DL_1 en M alors f est continue en M et admet des dérivées partielles en $M: \nabla f(M) = (a,b)$

Remarques -

- 1. L'existence des dérivées partielles n'assure pas l'existence d'un développement limité à l'ordre 1.
- 2. L'existence d'un DL_1 ne permet pas de conclure que la fonction est de classe \mathcal{C}^1 .

Théorème – Existence d'un DL_1

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$, alors f possède un développement limité à l'ordre 1 en tout point de U.

Autrement dit, pour tout $M \in U$ et pour tout $H \in \mathbb{R}^2$ tels que $M + H \in U$, on a :

$$f(M+H) = f(M) + \langle \nabla f(M), H \rangle + o(\|H\|)$$

Démonstration -

Admise

Exercice: Soient $f \in \mathcal{C}^1(U,\mathbb{R}), M \in U$ et $\overrightarrow{v} \in \mathbb{R}^2$ un vecteur unitaire (ie. $\|\overrightarrow{v}\| = 1$).

- 1. Montrer que $t \mapsto f(M + t \overrightarrow{v})$ est dérivable en 0.
- 2. En déduire que $D_{\overrightarrow{v}}f(M) = \langle \nabla f(M), \overrightarrow{v} \rangle$.

[10] à compléter

| Solution -Corollaire – Si f est de classe C^1 sur U alors f est continue sur U.

Remarque – L'étude du comportement local autour de M_0 nous invite à considérer la fonction

$$(h,k) \mapsto f(x_0 + h, y_0 + k) - f(x_0, y_0)$$

Le DL_1 donne une expression affine en première approximation. A la fin de ce cours, nous reviendrons sur cette approche pour l'étude des extremums.

Définition – Approximation affine, plan tangent

Si f admet un développement limité à l'ordre 1 en M_0 alors on appelle :

- (i) approximation affine de f au voisinage de M_0 la fonction $(x,y) \mapsto f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)$
- (ii) plan tangent au graphe de f en $M_0: z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y y_0).$

Exercice: Donner un vecteur normal au plan tangent en M lorsque f admet un DL_1 en M.

11 à compléter

| Solution -**Exercice:** Donner l'équation du plan tangent du graphe de $(x,y) \mapsto 3x^2y - 1$ en $M(u,v) \in \mathbb{R}^2$.

[12] à compléter

| Solution -

2.3Règle de la chaîne

Théorème – Soient $f \in \mathcal{C}^1(U,\mathbb{R})$, $u,v \in \mathcal{C}^1(I,\mathbb{R})$ avec I un intervalle réel et pour tout $t \in I$, $(u(t),v(t)) \in U$. Alors la fonction $g: t \mapsto f(u(t), v(t)) \in \mathcal{C}^1(I, \mathbb{R})$ et, pour tout $t \in I$:

$$g'(t) = \frac{\partial f}{\partial x} (u(t), v(t)) u'(t) + \frac{\partial f}{\partial y} (u(t), v(t)) v'(t)$$

Démonstration -

Travaillons sur les DL_1 . Soit $t_0 \in I$, $M_0 = (x_0, y_0) = (u(t_0), v(t_0))$

- DL_1 de f en M_0 : $f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|)$
- DL_1 de u et v en $t_0: u(t) = u(t_0) + (t t_0)u'(t_0) + o(t t_0)$ et $v(t) = v(t_0) + (t t_0)v'(t_0) + o(t t_0)$ Donc $g(t) = f(u(t_0) + h, v(t_0) + k)$ avec $h = (t t_0)u'(t_0) + o(t t_0)$ et $k = (t t_0)v'(t_0) + o(t t_0)$.

$$g(t) = f(u(t_0), v(t_0)) + (t - t_0) \left(\frac{\partial f}{\partial x} (u(t_0), v(t_0)) u'(t_0) + \frac{\partial f}{\partial y} (u(t_0), v(t_0)) v'(t_0) \right) + o(t - t_0)$$

Ainsi g admet un DL_1 en t_0 donc est dérivable en t_0 et on obtient l'expression de $g'(t_0)$.

Exemple

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. La fonction $t \mapsto f(\cos(t), t^3 - 1)$ est de classe \mathcal{C}^1 sur \mathbb{R} et sa dérivée est

$$t \mapsto -\sin(t)\frac{\partial f}{\partial x}(\cos(t), t^3 - 1) + 3t^2\frac{\partial f}{\partial y}(\cos(t), t^3 - 1)$$

Exercice : Soit $f:(x,y)\mapsto (x^2+y^2)e^{-xy}$. Donner l'expression de la dérivée de $\varphi:t\mapsto f(t^2,t)$.

à compléter

| Solution - Théorème – Soit $f \in \mathcal{C}^1(U, \mathbb{R})$.

(i) Règle de la chaîne : soit $\gamma \in \mathcal{C}^1(I, \mathbb{R}^2)$ avec I un intervalle réel et $\gamma(I) \subset U$. Les deux composantes de γ , $(t \mapsto \gamma_1(t), t \mapsto \gamma_2(t))$, sont de classe \mathcal{C}^1 sur I et $\gamma' = (\gamma'_1, \gamma'_2)$. Alors $f \circ \gamma \in \mathcal{C}^1(I, \mathbb{R})$ et

$$\forall t \in I, \quad (f \circ \gamma)'(t) = \gamma_1'(t) \frac{\partial f}{\partial x} \big(\gamma(t) \big) + \gamma_2'(t) \frac{\partial f}{\partial y} \big(\gamma(t) \big) \big) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle$$

(ii) Dérivée directionnelle : f est dérivable en tout point et dans toute les directions. En particulier, pour tout $M \in U$ et $\overrightarrow{v} = (h, k) \in \mathbb{R}^2$:

$$D_{\overrightarrow{v}}f(M) = \frac{\partial f}{\partial x}(M)h + \frac{\partial f}{\partial y}(M)k = \langle \nabla f(M), \overrightarrow{v} \rangle$$

(iii) Interprétation géométrique du gradient : le gradient de f est orthogonal aux lignes de niveau de f et dirigé dans la direction où f croît le plus vite

Démonstration -

- (i) Simple réécriture de la règle de la chaîne.
- (ii) Cas particulier de la règle de la chaîne avec $\gamma(t) = M + t \overrightarrow{v}$.
- (iii) Soit $k \in \mathbb{R}$, on considère la ligne de niveau de hauteur $k : \mathcal{L}_k = \{(x,y) \in U; f(x,y) = k\}$ et notons γ la fonction associée (s'il en ait une) : $\forall M \in \mathcal{L}_k, \exists t \in I; M = \gamma(t).$

Comme pour tout $t \in I$, $f(\gamma(t)) = k$, alors $(f \circ \gamma)'(t) = 0$ et donc la règle de la chaîne en t donne $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$.

Ainsi, $\nabla f(\gamma(t))$ est orthogonal à $\gamma'(t)$ qui est la direction de la tangente de \mathcal{L}_k en $M = \gamma(t)$.

Par conséquence, le gradient pointe dans la direction où f augmente le plus.

Théorème – Changement de variables - $f \circ \psi$ avec $\psi = (x, y) \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R}^2)$ et $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$

Soit U, Ω deux ouverts de \mathbb{R}^2 , $x, y \in \mathcal{C}^1(\Omega, \mathbb{R})$, $\psi = (x, y)$ et $f \in \mathcal{C}^1(U, \mathbb{R})$ tels que pour tout $(u, v) \in \Omega$, $\psi(u, v) = 0$ $(x(u,v),y(u,v)) \in U$.

On pose
$$F = f \circ \psi = f(x(u, v), y(u, v))$$
. Alors $F \in C^1(\Omega, \mathbb{R})$:
(i) $\partial_1 F(u, v) = \frac{\partial F}{\partial u}(u, v) = \frac{\partial f \circ \psi}{\partial u}(u, v) = \frac{\partial}{\partial u} \Big(f(x(u, v), y(u, v)) \Big) = \frac{\partial x}{\partial u}(u, v) \frac{\partial f}{\partial x} (x(u, v), y(u, v)) + \frac{\partial y}{\partial u}(u, v) \frac{\partial f}{\partial y} (x(u, v), y(u, v))$

(ii)
$$\partial_2 F(u,v) = \frac{\partial F}{\partial v}(u,v) = \frac{\partial f \circ \psi}{\partial v}(u,v) = \frac{\partial}{\partial v} \left(f(x(u,v),y(u,v)) \right) = \frac{\partial x}{\partial v}(u,v) \frac{\partial f}{\partial x}(x(u,v),y(u,v)) + \frac{\partial y}{\partial v}(u,v) \frac{\partial f}{\partial y}(x(u,v),y(u,v))$$

En bref, cela s'écrit : $\frac{\partial F}{\partial u} = \frac{\partial x}{\partial u} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial u} \frac{\partial f}{\partial y}$ et $\frac{\partial F}{\partial v} = \frac{\partial x}{\partial v} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial v} \frac{\partial f}{\partial y}$.

Exemple

En utilisant le changement en coordonnées polaires, nous allons déterminer l'ensemble des fonctions $f \in \mathcal{C}^1((\mathbb{R}_+^*)^2)$ vérifiant

$$x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 0$$

Posons $F = f \circ \varphi$ avec $\varphi : (r, \theta) \mapsto (r \cos(\theta), r \sin(\theta)) \in \mathcal{C}^1(\mathbb{R}_+^* \times \mathbb{R}, \mathbb{R})$.

Approche 1:

• Analyse : Déterminons $\frac{\partial F}{\partial \theta}$

$$\frac{\partial F}{\partial \theta} = -r \sin(\theta) \frac{\partial f}{\partial x} \big(r \cos(\theta), r \sin(\theta) \big) + r \cos(\theta) \frac{\partial f}{\partial y} \big(r \cos(\theta), r \sin(\theta) \big) = -y \frac{\partial f}{\partial x} (x, y) + x \frac{\partial f}{\partial y} (x, y) = 0$$

Ainsi, $\theta \mapsto F(r,\theta)$ est constante, indépendante de θ mais possiblement dépendante de r.

Il existe φ telle que $F(r,\theta) = \varphi(r)$. Comme F est de classe \mathcal{C}^1 alors φ aussi.

Les solutions sont : $\{(x,y) \mapsto \varphi(\sqrt{x^2 + y^2}); \varphi \in \mathcal{C}^1(\mathbb{R}_+^*, \mathbb{R})\}$

• Synthèse : soit $f:(x,y)\mapsto \varphi(\sqrt{x^2+y^2})$ avec $\varphi\in\mathcal{C}^1(\mathbb{R}_+^*,\mathbb{R})$

$$y\frac{\partial f}{\partial x} = \frac{xy}{\sqrt{x^2 + y^2}} \varphi'(\sqrt{x^2 + y^2}) = x\frac{\partial f}{\partial y}$$

Approche 2: On détermine $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ à remplacer dans l'équation.

On pose
$$f = F \circ \varphi^{-1}$$
 et $\varphi^{-1}: (x,y) \mapsto \left(\sqrt{x^2 + y^2}, \operatorname{Arctan}\left(\frac{y}{x}\right)\right):$

$$\frac{\partial f}{\partial x}(x,y) = \frac{2x}{2\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2} \, \frac{1}{1 + \frac{y^2}{x^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y)\right) - \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial \theta} \left(\varphi^$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial r} \left(\varphi^{-1}(x,y) \right) + \frac{x}{x^2 + y^2} \frac{\partial F}{\partial \theta} \left(\varphi^{-1}(x,y) \right)$$

Ainsi,
$$x \frac{\partial f}{\partial y} - y \frac{\partial f}{\partial x} = 0 \quad \Leftrightarrow \quad \cdots \quad \Leftrightarrow \quad \frac{\partial F}{\partial \theta} = 0.$$

3 Extremums

Définition – Extremum

Soit $f \in \mathbb{R}^U$ et $A \in U$. On dit que f possède un minimum local [resp. maximum local] en A s'il existe r > 0 tel que pour tout $M \in B(A, r)$, $f(M) \ge f(A)$ [resp. $f(M) \le f(A)$].

Un extremum est un minimum ou un maximum. On parle d'un extremum global lorsque le comparaison est vérifiée sur tout le domaine de définition.

Définition – Point critique

On dit que A est un point critique de f si le gradient de f s'annule en A.

Théorème – Condition nécessaire d'existence d'un extremum

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. Si f admet un extremum local en A, alors A est un point critique de f.

Démonstration -

Les fonctions $t \mapsto f(A + t \overrightarrow{v})$ sont de classe \mathcal{C}^1 admettent un extremum en A un point intérieur à l'intervalle ouvert de définition; ainsi, leur dérivée s'annule. En particulier, les dérivées partielles de f s'annule au point A, donc $\nabla f(A) = 0$.

 $\mathbf{Remarque} - \mathbf{Un}$ point critique A d'une fonction f peut être :

1. un maximum, lorsque toutes les fonctions partielles $t\mapsto f(A+t\overrightarrow{u})$ admettent un maximum en A

Par exemple, le point (0,0) est un point critique de $f(x,y) = -x^2 - y^2$. C'est le maximum de la fonction f;

2. un minimum, lorsque toutes les fonctions partielles $t \mapsto f(A + t \overrightarrow{u})$ admettent un minimum en A

Par exemple, le point (0,0) est un point critique de $f(x,y) = x^2 + y^2$. C'est le minimum de la fonction f.

3. Un point selle, lorsqu'il existe une direction \overrightarrow{u} telle que la fonction partielle $t \mapsto f(A + t \overrightarrow{u})$ admet un maximum en 0 et une directions \overrightarrow{v} telle que la fonction partielle $t \mapsto f(A + t \overrightarrow{v})$ admet un minimum en 0.

Méthode : Pour rechercher les extrémums de f de classe \mathcal{C}^1 définie sur un ensemble fermé, borné Ω , on recherche parmi :

- les points critiques de Ω où $\nabla f = 0$,
- les extrémums de f sur le bord de Ω . Si on sait paramétrer le bord de Ω par $t \mapsto (u(t), v(t))$ cela aide de rechercher les extrémums de la fonction d'une variable $t \mapsto f(u(t), v(t))$.

Pour terminer le travail, on étudie le signe de f(x+h,y+k)-f(x,y) pour (h,k) au voisinage de (0,0).

Exercice: Identifier le maximum et le minimum de $f(x,y)=x^3y$ sur l'ensemble $\Omega=\left\{(x,y)\in\mathbb{R}^2\,\middle|\,x^2+y^2\leq 1\right\}$

[14] à compléter

Solution − ▶ Recherche et étude des points critiques.

ightharpoonup Étude des points sur le bord : trouver une courbe γ qui parcourt le bord et étudier $g=f\circ\gamma$.