Corrigé du DM 14

Densité et structure algébrique

1. Soit $y \in f(I)$ et $\varepsilon > 0$. Il existe $x \in I$ tel que f(x) = y.

La continuité de f en x donne qu'il existe $\alpha > 0$ tel que $f(I \cap [x - \alpha, x + \alpha]) \subset [y - \varepsilon, y + \varepsilon]$.

Or A est dense dans I donc il existe $a \in A \cap I \cap [x - \alpha, x + \alpha]$ et donc $f(a) \in [y - \varepsilon, y + \varepsilon]$.

Ainsi, |f(A)| est dense dans f(I).

Autre approche : Mettre en place la caractérisation séquentielle de la densité.

Soit $y \in f(I)$, alors il existe $x \in I$.

Par densité de A dans I alors il existe $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ qui converge vers x.

Par continuité de f en x, alors $(f(a_n))_{n\in\mathbb{N}} \in f(A)^{\mathbb{N}}$ converge vers y. Ainsi, par caractérisation séquentielle de la densité, f(A) est dense dans f(I).

2. Soit $a \in \mathbb{R}_+^*$, $a\mathbb{Z} \subset \mathbb{R}$. De plus $0 = a \times 0 \in a\mathbb{Z}$ donc $a\mathbb{Z} \neq \emptyset$.

Enfin, pour $ak, ak' \in a\mathbb{Z}$ alors $ak + (-ak') = a(k - k') \in a\mathbb{Z}$.

Ainsi, par caractérisation d'un sous groupe, $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{R}, +)$.

- 3. Soit G un sous groupe de $(\mathbb{R}, +)$ différent de $\{0\}$.
- a) Soit $x \in G \cap \{0\}$ alors $-x \in G$ et donc $G \cap \mathbb{R}_+^*$ est une partie réelle non vide et minorée par 0 donc elle possède une borne inférieure, notée b.
- b) Soit $b \in G \cap \mathbb{R}_+^*$. A fortiori b > 0. Montrons que $G = b\mathbb{Z}$.
 - \supset Par itération de la loi de composition interne $b\mathbb{N}\subset G$; leurs opposés sont aussi dans G donc $b\mathbb{Z} \subset G$.
 - \subseteq Soit $x \in G$. Posons $q = \left| \frac{x}{h} \right|$ alors

$$q \le \frac{x}{b} < q+1 \quad \Rightarrow \quad qb \le x < qb+b \quad \Rightarrow \quad 0 \le x-qb < b$$

Or $x, b \in G$ et $q \in \mathbb{Z}$ donc $qb \in G$ et pour finir $x - qb \in G \cap \mathbb{R}_+$. Comme $b = \inf(G \cap \mathbb{R}_+^*)$ alors x - qb = 0 donc $x = qb \in b\mathbb{Z}$. Ainsi, $G \subset b\mathbb{Z}$.

Ainsi, si $b \in G \cap \mathbb{R}_+^*$, alors $G \subset b\mathbb{Z}$.

c) Soit $b \notin G \cap \mathbb{R}_{+}^{*}$. Montrons que G est dense dans \mathbb{R} .

Soit $x \in \mathbb{R}_+^*$ et $\varepsilon > 0$. Par définition de la borne inférieure, $b + \varepsilon$ n'est pas un minorant de $G \cap \mathbb{R}_+^*$ donc il existe $y_1 \in]b, b + \varepsilon[\cap G]$.

De même, y_1 n'est pas non plus un minorant de $G \cap \mathbb{R}_+^*$ donc il existe $y_2 \in]b, y_1[\cap G]$. Il vient :

$$b < y_2 < y_1 < b + \varepsilon \quad \Rightarrow \quad \left\{ \begin{array}{l} y_2 < y_1 < b + \varepsilon \\ -y_2 \le -y_2 \le -b \end{array} \right. \Rightarrow \quad 0 < y_1 - y_2 < \varepsilon$$

Comme $y_1, y_2 \in G$ alors $\alpha = y_1 - y_2 \in G$. Posons $q = \left| \frac{x}{\alpha} \right|$ alors

$$q \le \frac{x}{\alpha} < q+1 \quad \Rightarrow \quad q\alpha \le x < q\alpha + \alpha$$

Or $\alpha < \varepsilon$ et comme $q\alpha \le x$ alors $q\alpha + \alpha < x + \varepsilon$ par somme d'inégalités. Donc

$$x < (q+1)\alpha < x + \varepsilon$$

De plus, par itération de la loi de composition interne, $(q+1)\alpha \in G \cap \mathbb{R}_+^*$.

Ainsi, $G \cap \mathbb{R}_+^*$ est dense dans \mathbb{R}_+ .

Considérant les opposés, alors $G \cap \mathbb{R}_{-}^{*}$ est dense dans \mathbb{R}_{-} .

Ainsi, si $b \notin G \cap \mathbb{R}_+^*$, alors G est dense dans \mathbb{R} .

Remarque – Si $b \notin G \cap \mathbb{R}_+^*$ alors b = 0.

Formuler ce résultat n'est pas directement utile pour répondre à la question de la densité.

Néanmoins il se déduit de ce qui a été fait en prenant $\varepsilon = b$.

En effet, raisonnant par l'absurde, supposant b > 0, alors $y_1 - y_2 \in G \cap]0, b[$ ce qui est contradictoire.

d) Si $G = \{0\}$ alors $G = 0\mathbb{Z}$. Sinon, nous venons de voir que soit $G = b\mathbb{Z}$ soit G est dense dans \mathbb{R} . Ainsi, les sous groupes de $(\mathbb{R}, +)$ sont soit de la forme $a\mathbb{Z}$ avec $a \in \mathbb{R}_+$, soit dense dans \mathbb{R} .

4. On a $\mathbb{Z} + 2\pi\mathbb{Z} \subset \mathbb{R}$. De plus, $1 = 1 + 2\pi \times 0 \in \mathbb{Z} + \pi\mathbb{Z}$ donc $\mathbb{Z} + \pi\mathbb{Z} \neq \emptyset$.

Enfin, pour $a+2b\pi, c+2d\pi \in \mathbb{Z}+2\pi\mathbb{Z}$ alors $a+2b\pi+(-c-2d\pi)=a-c+2\pi(b-d)\in \mathbb{Z}+2\pi\mathbb{Z}$. Ainsi, par caractérisation d'un sous groupe, $\mathbb{Z}+2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R},+)$.

5. Montrons par l'absurde que $\mathbb{Z}+2\pi\mathbb{Z}$ est dense dans \mathbb{R} . Supposons la négation vraie ; d'après ce qui précède, il existe $b\in\mathbb{R}_+^*$ tel que $\mathbb{Z}+2\pi\mathbb{Z}=b\mathbb{Z}$.

D'une part, $1 \in \mathbb{Z} + 2\pi\mathbb{Z} = b\mathbb{Z}$ donc il existe $k \in \mathbb{Z}^*$ tel que 1 = bk c'est-à-dire que $b = \frac{1}{k} \in \mathbb{Q}$.

D'autre part, $\pi \in \mathbb{Z} + 2\pi\mathbb{Z} = b\mathbb{Z}$ donc il existe $k' \in \mathbb{Z}^*$ tel que $2\pi = bk'$ et donc $\pi = \frac{bk'}{2} \in \mathbb{Q}$ ce qui est faux par hypothèse.

Ainsi, $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} .

6. Procédons par double inclusion. D'une part :

$$\mathbb{N} \subset \mathbb{N} + 2\pi \mathbb{Z} \subset \mathbb{Z} + 2\pi \mathbb{Z} \quad \Rightarrow \quad \cos(\mathbb{N}) \subset \cos(\mathbb{N} + 2\pi \mathbb{Z}) \subset \cos(\mathbb{Z} + 2\pi \mathbb{Z})$$

D'autre part, considérons $x \in \cos (\mathbb{Z} + 2\pi \mathbb{Z})$ donc il existe $a, b \in \mathbb{Z}$ tel que

$$x = \cos(a + 2b\pi) = \cos(a) = \cos(-a) \in \cos(\mathbb{N})$$

Donc $\cos (\mathbb{Z} + 2\pi \mathbb{Z}) \subset \cos(\mathbb{N})$.

Ainsi,
$$\cos (\mathbb{Z} + 2\pi \mathbb{Z}) = \cos (\mathbb{N} + \pi \mathbb{Z}) = \cos(\mathbb{N}).$$

7. La fonction cos est continue sur \mathbb{R} et $\cos(\mathbb{R}) = [-1, 1]$.

De plus, $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} donc $\cos(\mathbb{Z} + 2\pi\mathbb{Z})$ est dense dans [-1, 1].

Or
$$\cos (\mathbb{Z} + 2\pi \mathbb{Z}) = \cos (\mathbb{N})$$
, donc $\cos(\mathbb{N})$ est dense dans $[-1, 1]$.

8. Soit $x \in [-1, 1]$. Montrons qu'il existe une fonction strictement croissante de $\varphi \in \mathbb{N}^{\mathbb{N}}$ telle que la suite $\Big(\cos\big(\varphi(n)\big)\Big)_{n\in\mathbb{N}}$ converge vers x.

Posons $\varphi(0) = 0$. Procédons par récurrence pour établir que pour tout $n \in \mathbb{N}^*$ on peut construire $\varphi(n)$ tel que $\varphi(n) > \varphi(n-1)$ et $|\cos(\varphi(n)) - x| \le \frac{2}{n}$.

• Initialisation : Posons $\varphi(1) = 1$ avec $1 > \varphi(0)$.

Comme $\cos(\varphi(1)), x \in [-1, 1]$ alors $\cos(\varphi(1)) - x \in [-2, 2]$ et donc $|\cos(\varphi(1)) - x| \le \frac{2}{1}$.

• <u>Hérédité</u> : Soit $n \ge 1$. On suppose $(\varphi(n)$ construit.

Considérons
$$K = \left([-1, 1] \cap \left[x - \frac{2}{n+1}, x + \frac{2}{n+1} \right] \right) \setminus \{\cos(j); j \in [0, \varphi(n)]\}.$$

L'ensemble K est une réunion finie d'intervalles. Alors il existe $a,b \in [-1,1]$ tel que $[a,b] \subset K$. La densité de $\cos(\mathbb{N})$ dans [-1,1] donne qu'il existe $N \in \mathbb{N}$ tel que $\cos(N) \in [a,b] \subset K$.

Par construction de K on a les propriétés suivantes :

- $N > \varphi(n)$, on peut pose $\varphi(n+1) = N$ $\cos(N) \in K \subset \left[x \frac{2}{n+1}, x + \frac{2}{n+1}\right]$ donc $|\cos(N) x| \le \frac{2}{n+1}$
- Conclusion : il existe une fonction $\varphi \in \mathbb{N}^{\mathbb{N}}$ strictement croissante telle que pour $n \in \mathbb{N}^*$

$$|\cos(\varphi(n)) - x| \le \frac{2}{n}$$

- Or $\frac{2}{n} \to 0$ donc $\cos(\varphi(n)) \to x$. Ainsi, il existe une suite extraite de $(\cos(n))_{n \in \mathbb{N}}$ qui converge vers x.